首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 156 毫秒
1.
锂离子电池新型正极材料LiFePO4/C的合成   总被引:1,自引:0,他引:1  
采用高温固相合成法合成了锂离子电池正极材料LiFePO4/C,并对其晶体结构、形貌和电化学性能进行了研究.结果表明:合成的LiFePO4/C材料为单一橄榄石型结构,颗粒分布比较均匀;以0.1 C倍率充放电时其初始比容量为115 mA·h/g,20次循环后其容量保持率为97%.  相似文献   

2.
采用微波法制备锂离子电池正极材料LiFePO4,通过X射线衍射(XRD)、扫描电镜(SEM)、循环伏安和恒电流充放电测试等方法对材料的结构、表观形貌及电化学性能进行表征,考察了葡萄糖、导电碳黑等不同碳源对目标材料性能的影响。结果表明,采用微波法能快速简便地制备出均相LiFePO4;于0.1C倍率下,以葡萄糖作为碳源的正极材料首次放电比容量可达131.1mA·h/g,充放电30次循环后,容量损失率为2.1%;以导电炭黑作为碳源的正极材料首次放电比容量为118.3mA·h/g,充放电30次循环后,容量损失率为5.2%。  相似文献   

3.
Ni2+掺杂LiFePO4正极材料的合成及性能   总被引:6,自引:0,他引:6  
以共沉淀法制备的Fe1xNixC2O4·2H2O(x=0,0.05,0.10)为铁源,采用高温固相反应法合成锂离子电池正极材料LiFe1-xNixPO4(x=0,0.05,0.10).应用热重-差热分析探讨材料合成机理、X射线衍射和扫描电镜表征材料的晶体结构和颗粒形貌,充放电仪测试材料的充放电性能.结果表明,所合成的材料结晶完整,为均一橄榄石型结构,仅含少量三价铁杂质;在室温下以0.1C充放电时,比容量较高,达到150 mAh/g左右,当充放电倍率提高到0.4C时,充放电比容量仍达120 mAh/g以上;且掺杂少量Ni2+后,正极材料氧化峰与还原峰电势差仅为0.079 V,明显低于纯相LiFePO4的0.101 V,有利于抑制材料充放电过程中的极化.  相似文献   

4.
橄榄石型结构的磷酸铁锂(LiFePO4)材料具有嵌入/脱出锂特性,对锂平台电压3.4V,理论比容量达170mA·h/g。该材料成本低廉,无毒性,对环境友好,充放电过程中能保持晶体结构的高度稳定,循环寿命长,耐高温性能好,可高倍率充放电,不会爆炸,是一种理想的锂离子二次电池正极材料。综述了LiFePO4电池正极材料的合成工艺与改性的研究进展。  相似文献   

5.
利用间歇式高温高压水热设备在超临界和亚临界条件下合成纯度高、结晶度好的亚微米级LiFePO4颗粒,通过XRD、SEM、充放电测试对LiFePO4的结构、形貌和电化学性能进行表征,并考查反应温度、压力和3种模板剂对制备的LiFePO4材料的结构、形貌及电化学性能的影响。结果表明温度和压力的升高有利于合成较小粒径、均一分布的颗粒,以PVP作为模板剂得到的样品性能最佳,制备的LiFePO4颗粒粒径为200~600 nm,0.1 C和1 C倍率下的首次放电比容量分别为141.2 mAh/g和113.6 mAh/g,1C倍率下循环100次,其容量保持率为96.0%,制备的材料具有优异的倍率性能。  相似文献   

6.
将高温固相法制备的LiFePO4高度分散在含有KNaC4H4O6的CuSO4水溶液中,利用非电解沉积法还原出溶液中的金属Cu,制备出了LiFePO4/Cu复合正极材料。采用XRD、恒流充放电及交流阻抗对材料的晶体结构和电化学性能进行了研究。结果表明:LiFePO4/Cu复合材料保持了橄榄石型LiFePO4的晶体结构,其电化学性能大大优于纯相LiFePO4。0.5C和1.0C倍率下的首次放电比容量分别为118 mAh/g和113 mAh/g,远高于纯相LiFePO4的首次放电比容量,其电荷转移电阻比纯相LiFePO4减少了约26Ω。  相似文献   

7.
采用喷雾干燥和高温固相法合成了一系列xLiFePO4·yLi3 V2( PO4)3复合正极材料.电化学测试结果表明,0.95LiFePO4·0.05Li3 V2( PO4)3复合正极材料具有较高的比容量、优良的循环性能和倍率性能,在电压范围为2.0V~4.3V,0.1C,1C,5C条件下的放电容量分别为162.7,147.7和122.3 mAh·g-1.0.5LiFePO4·0.5Li3 V2(PO4)3和0.3LiFePO4·0.7Li3 V2 (PO4)3复合正极材料则表现出了良好的倍率性能,5C,10C充放电条件下容量保持率分别为:77%,73%,88%,82%.  相似文献   

8.
锂离子电池正极材料LiFePO4的制备   总被引:2,自引:0,他引:2  
对制备橄榄石型锂离子电池正极材料LiFePO4进行了实验研究,采用固相合成法合成了LiFePO4和掺杂碳的LiFePO4正极材料。分析测试结果表明:掺杂碳的LiFePO4作为正极材料具有良好的电化学性能,在0.1C倍率下放电,其室温初始放电容量为130mA·h/g,循环10次后几乎没有衰减。  相似文献   

9.
采用不同锂源用碳热还原法合成LiFePO4正极材料,利用TG-DTA、XRD和SEM对前驱体、材料的晶体结构及表面形貌进行表征,通过充放电和循环伏安测试电化学性能。结果显示,以乙酸锂为锂源制得的样品颗粒粒径最小、电化学性能最佳。以C/20倍率充放电,首次放电比容量达到143.3 mA.h/g。该样品具有稳定的循环行为,以C/10倍率循环15次后放电容量为初始值的98%。循环伏安曲线显示以乙酸锂为锂源合成的LiFePO4材料具有良好的可逆性,极化小。  相似文献   

10.
以MnCO3为Mn源,采用热爆工艺合成LiFePO4,研究不同添加量的MnCO3对LiFePO4性能的影响。结果表明,掺杂量x=0.05时LiFe0.95Mn0.05PO4衍射峰峰强和半高宽为最佳;SEM测试显示,掺杂产物的颗粒分散最好,颗粒均匀;掺杂产物在0.1 C倍率下的首次充放电比容量分别为154.9 mAh/g和138.5 mAh/g,较纯LiFePO4的首次充放电比容量有较大提高;在经过50次循环后放电比容量保持率为86.45%,在0.2 C、0.5 C和1 C倍率下的首次放电比容量分别为129 mAh/g、109.4 m Ah/g和86.9 mAh/g。  相似文献   

11.
锂离子电池正极材料LiFePO4的研究进展   总被引:7,自引:0,他引:7  
对锂离子正极材料LiFePO4的性能、结构,锂离子的脱嵌机制。制备方法,掺杂改性等进行了详细的阐述。指出了锂离子电池正极材料LiFePO4良好的应用前景。  相似文献   

12.
In this paper,a water-based binder was used in LiFePO_4 Li-ion batteries and the factors affecting the battery performance were analyzed. The type and amount of conductive agent and the amount of binder were found to have a significant impact on the rate performance of LiFePO_4 Li-ion batteries. The impact of the two types of binders used in the test was not obvious.  相似文献   

13.
高能量比、循环寿命长、成本低和无环境污染是目前锂离子电池正极材料的研究趋势.LiFePO4以其优良的电化学性能,被认为是最有前途的锂离子电池正极材料.该文综述了现有LiFePO4制备工艺,包括高温固相反应法、水热合成法、溶胶-凝胶法、微波合成法和改性法(如掺杂、包覆)等;并且指出LiFePO4可望于近期内在小功率电池中得到应用,而包覆、掺杂等改性手段是提高其电导率和粒子扩散速率的关键技术.  相似文献   

14.
以碳酸锂(Li2CO3)为锂源, 磷酸二氢铵(NH4H2PO4)为磷源, 草酸亚铁(FeC2O4·2H2O)为铁源, 柠檬酸(C6H8O7·H2O)为碳源, 采用固相反应法制备橄榄石晶型磷酸铁锂。利用X射线衍射仪, 扫描电子显微镜, 能谱仪, 比表面积分析仪和电化学测试等设备和方法对磷酸铁锂材料的物相组成、结构、形貌和电化学性能进行表征, 研究煅烧温度和保温时间对磷酸铁锂电化学性能的影响, 并通过添加碳对试样进行包覆改性。结果表明, 在煅烧温度为700℃, 保温时间为12 h条件下制备的磷酸铁锂正极材料的电化学性能良好, 碳包覆能有效改善电极材料的性能。包覆碳后的磷酸铁锂电极材料在0.2C充电电流密度下首次放电比容量可达319.2 mAh·g-1; 在1C充电电流密度下循环100次后, 放电比容量保持在168.1 mAh·g-1。  相似文献   

15.
一步法制备微晶玻璃是一种能够有效实现对冶金渣中“渣”和“热”同时利用的方法。以铜渣为研究对象,通过对铜渣重熔过程的研究,获得了接近现场铜渣矿相组成的重熔条件,在此基础上,探究了在不同的浇铸温度、不同的热处理温度对一步法生产的微晶玻璃结构和性能的影响。结果显示,在不同温度制度下,微晶玻璃中的晶相以不规则多面体形状的尖晶石和长条棒状的橄榄石为主。尖晶石矿物有利于微晶玻璃性能,而橄榄石大量析出不利于其性能,提高浇铸温度有利于尖晶石的析出。母玻璃中橄榄石和尖晶石析晶速率最大的温度分别为1 100 ℃和1 050 ℃。提高浇注温度≥1 500 ℃,降低析晶温度≤1 050 ℃,有利于抑制橄榄石并促进尖晶石析出,从而提高微晶玻璃性能。较优的一步法热制度为浇注温度1 500 ℃,析晶温度1 050 ℃,此时微晶玻璃的抗折强度达到78.06 MPa。   相似文献   

16.
原材料预处理对锰酸锂性能的改性研究   总被引:1,自引:0,他引:1  
以经过某种特殊方式预处理后的电解二氧化锰为原料,采用机械活化—高温固相法得到掺杂尖晶石锰酸锂,经过化学分析、X射线衍射(XRD)、扫描电镜(SEM)、粒度分析、比表面积分析、电化学性能测试对锰酸锂进行表征。结果表明:经过原料预处理后,锰酸锂产品的杂质含量降低,粒度分布更加集中,颗粒大小均匀。电化学性能测定,经过原料预处理后锰酸锂0.5C容量达到113.7 mAh/g,1C循环53次后容量保持96.72%,较未经过原料预处理的锰酸锂性能有明显改善。  相似文献   

17.
溶胶凝胶法锂离子电池正极材料LiMn2O4的制备及表征   总被引:1,自引:0,他引:1  
研究了以氢氧化锂和醋酸锰为原料 ,用溶胶—凝胶法制备作为锂离子二次电池的正极材料的Liy Crx Mn2 -x O4 ( x=0 .0 5,0 .0 8,0 .1 2 ;y=1 .0 0 ,1 .0 5,1 .1 0 )。用 X射线衍射法对样品进行分析 ,证实其结构仍然是尖晶石结构。实验结果显示 ,对于尖晶石 Li1.0 5Cr0 .0 5Mn1.95O4 的最佳热合成温度是750℃ ,而合成 Liy Crx Mn2 -x O4 样品的晶体学参数和电化学性能在很大程度上受锂和铬的含量的影响。综合考虑循环寿命和容量密度 ,Li1.0 5Cr0 .0 5Mn1.95O4 的性能最好。循环性能的改善主要是因为掺杂后结构更稳定。  相似文献   

18.
用CVD法制备碳纳米管,通过强酸超声处理后溶解在N-甲基吡咯烷酮(NMP)中制备成碳纳米管导电浆料,利用XRD,SEM,BET考察了制备的碳纳米管导电剂浆料的结构和表面形貌,并考察了其作为导电剂对LiNi0.8Co0.1Mn0.1O2锂离子电池电化学性能的影响;研究结果表明经过王水处理后的碳纳米管获得了更好的分散性,并且得到了更多的介孔。添加了碳纳米管导电浆料的电池首次放电比容量是186.1 mAh/g,而未添加碳纳米管导电浆料的电池首次放电比容量是181.2 mAh/g。添加了碳纳米管导电浆料的电池循环性能更好,100次循环容量保持率是95.95%;添加了碳纳米管导电浆料的电池大倍率性能优越,在2C、3C、5C倍率下要明显高于单独用SP做导电剂的电池(1 C=180mA/g)。并且,添加碳纳米管导电浆料的电池电极界面阻抗要小。   相似文献   

19.
Phospho-olivine pristine LiMnPO_4/C and yttrium-substituted LiMn_(1-x)Y_xPO_4/C(x=0,0.01,0.03,0.05)were synthesized by a solution combustion method.The effects of Y-doped on structure,morphology and electrochemical performances were investigated.From powder X-ray diffraction pattern,all substituted materials adopt an identical structure to that of the LiMnPO_4 olivine structure,suggesting that the yttrium ion was well inco rporated into the crystal lattice,without any changes in the host crystal structure.The electrochemical impedance spectroscopy provides clearly that yttrium-substituting reduces the charge transfer impedance and improves the lithium ion diffusion through the structure.When x=0.01,the material shows an excellent capacity and stability during charge/discharge process.The initial specific discharge capacity can reach up to 156.84 mAh/g at C/20,with a coulombic efficiency of about 96.11%,which is 14% higher than that of the pristine material.The results confirm that the cyclic stability and the electrochemical performances of LiMnPO_4/C are highly improved by Y-doping.  相似文献   

20.
废旧磷酸铁锂电池回收对减少环境污染与缓解锂资源压力有重要意义。传统废旧磷酸铁锂电池回收存在锂回收率低、废水处理成本高的问题。通过借鉴Li-Fe-P-H2O系E-pH图及磷酸铁锂电池充放电脱嵌锂的过程,提出采用“过氧化氢+硫酸”体系选择性回收锂。经XRD、SEM检测,提锂后橄榄石型的FePO4结构与原始LiFePO4相结构保持一致,微观形貌的变化也很小。优化条件下,Li浸出率达98%以上,同时Fe、P的浸出率在0.1%以下。得到的锂浸出液经净化后成功制备出电池级的碳酸锂。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号