首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Construction of a mammalian artificial chromosome (MAC) will develop our understanding of the requirements for normal chromosome maintenance, replication and segregation while offering the capacity for introducing genes into cells. Construction of MACs with telomere, centromere and replication function has been approached by two methods. The 'top down' strategy uses artificially induced chromosome truncations as a means to define a minimal chromosome that retains the mitotic properties of a normal chromosome. The 'build up' approach has focused on attempts to assemble MAC vectors containing functionally defined telomere repeats together with candidate centromere and replication origin sequences. Here we report on significant advances in both areas, with particular emphasis on two reports showing that stable, low copy number MACs containing a functional centromere can be produced following transfection of naked DNA into the human HT1080 cell line. One approach used a transfection mixture of cloned synthetic alpha-satellite arrays up to 1 Mb in length and unlinked telomeric DNA, in either the presence or absence of random human genomic DNA fragments. In the second approach, MACs were formed from a defined yeast artificial chromosome (YAC) DNA molecule containing 100 kb of highly homo- geneous alphoid DNA retrofitted with human telomere repeats. These results demonstrate for the first time that alpha-satellite DNA can seed de novo centromeres in human cells, indicating that this repetitive sequence family plays an important role in centromere function. The stability of these MACs suggests that they have potential to be developed as gene delivery vectors.  相似文献   

2.
A human artificial chromosome (HAC) vector was constructed from a 1-Mb yeast artificial chromosome (YAC) that was selected based on its size from among several YACs identified by screening a randomly chosen subset of the Centre d'Etude du Polymorphisme Humain (CEPH) (Paris) YAC library with a degenerate alpha satellite probe. This YAC, which also included non-alpha satellite DNA, was modified to contain human telomeric DNA and a putative origin of replication from the human beta-globin locus. The resultant HAC vector was introduced into human cells by lipid-mediated DNA transfection, and HACs were identified that bound the active kinetochore protein CENP-E and were mitotically stable in the absence of selection for at least 100 generations. Microdissected HACs used as fluorescence in situ hybridization probes localized to the HAC itself and not to the arms of any endogenous human chromosomes, suggesting that the HAC was not formed by telomere fragmentation. Our ability to manipulate the HAC vector by recombinant genetic methods should allow us to further define the elements necessary for mammalian chromosome function.  相似文献   

3.
4.
A physical map of rice chromosome 5 was constructed with yeast artificial chromosome (YAC) clones along a high-resolution molecular linkage map carrying 118 DNA markers distributed over 123.7 cM of genomic DNA. YAC clones have been identified by colony and Southern hybridization for 105 restriction fragment length polymorphism (RFLP) markers and by polymerase chain reaction (PCR) screening for 8 sequence-tagged site (STS) markers and 5 randomly amplified polymorphic DNA (RAPD) markers. Of 458 YACs, 235 individual YACs with an average insert length of 350 kb were selected and ordered on chromosome 5 from the YAC library. Forty-eight contigs covering nearly 21 Mb were formed on the chromosome 5; the longest one was 6 cM and covered 1.5 Mb. The length covered with YAC clones corresponded to 62% of the total length, of chromosome 5. There were many multicopy sequences of expressed genes on chromosome 5. The distribution of many copies of these expressed gene sequences was determined by YAC Southern hybridization and is discussed. A physical map with these characteristics provides a powerful tool for elucidation of genome structure and extraction of useful genetic information in rice.  相似文献   

5.
The introduction of cloned DNA into mammalian cells allows functional testing of genes contained on the fragments. In many cases, the exogenous DNA introduced into mammalian cells requires selectable genes that mark the presence of input DNA. Two new vectors, carrying mammalian selectable markers encoding for either neomycin-resistance (neo) or histidinol-resistance (hol), have been constructed for targeted integration to specific single-copy sites within yeast artificial chromosome (YAC) insert DNA. The integration cassettes comprise a single selectable yeast gene adjacent to a mammalian selectable gene, either LEU2 with neo or HIS3 with hol. Modification of the YAC occurs in yeast by transfection with linear DNA containing YAC-specific, unique, recombinogenic ends, thereby ensuring co-integration of the markers. Analysis of modified YACs confirms that both vectors correctly integrate into the targeted unique sites. The precise localization of selectable marker genes in the cloned DNA ensures the integrity of the genomic fragments during functional testing. Placement of mammalian selectable markers within the YAC insert DNA should allow for YAC-based gene targeting experiments in a variety of mammalian cell lines.  相似文献   

6.
7.
The childhood spinal muscular atrophies (SMAs) are the most common, serious neuromuscular disorders of childhood second to Duchenne muscular dystrophy. A single locus for these disorders has been mapped by recombination events to a region of 0.7 centimorgan (range, 0.1-2.1 centimorgans) between loci D5S435 and MAP1B on chromosome 5q11.2-13.3. By using PCR amplification to screen yeast artificial chromosome (YAC) DNA pools and the PCR-vectorette method to amplify YAC ends, a YAC contig was constructed across the disease gene region. Nine walk steps identified 32 YACs, including a minimum of seven overlapping YAC clones (average size, 460 kb) that span the SMA region. The contig is characterized by a collection of 30 YAC-end sequence tag sites together with seven genetic markers. The entire YAC contig spans a minimum of 3.2 Mb; the SMA locus is confined to roughly half of this region. Microsatellite markers generated along the YAC contig segregate with the SMA locus in all families where the flanking markers (D5S435 and MAP1B) recombine. Construction of a YAC contig across the disease gene region is an essential step in isolation of the SMA-encoding gene.  相似文献   

8.
The transformation-associated recombination (TAR) procedure allows rapid, site-directed cloning of specific human chromosomal regions as yeast artificial chromosomes (YACs). The procedure requires knowledge of only a single, relatively small genomic sequence that resides adjacent to the chromosomal region of interest. We applied this approach to the cloning of the neocentromere DNA of a marker chromosome that we have previously shown to have originated through the activation of a latent centromere at human chromosome 10q25. Using a unique 1.4-kb DNA fragment as a "hook" in TAR experiments, we achieved single-step isolation of the critical neocentromere DNA region as two stable, 110- and 80-kb circular YACs. For obtaining large quantities of highly purified DNA, these YACs were retrofitted with the yeast-bacteria-mammalian-cells shuttle vector BRV1, electroporated into Escherichia coli DH10B, and isolated as bacterial artificial chromosomes (BACs). Extensive characterization of these YACs and BACs by PCR and restriction analyses revealed that they are identical to the corresponding regions of the normal chromosome 10 and provided further support for the formation of the neocentromere within the marker chromosome through epigenetic activation.  相似文献   

9.
RecA-assisted restriction endonuclease (RARE) cleavage is an "Achilles' heel" approach to restriction mapping whereby a RecA-protein-oligodeoxynucleotide complex protects an individual restriction site from methylation, thus limiting subsequent digestion to a single, predetermined site. We have used RARE cleavage to cut yeast artificial chromosomes (YACs) at specific EcoRI sites located within or adjacent to sequence-tagged sites (STSs). Each cleavage reaction produces two YAC fragments whose sizes are a direct measure of the position of the STS in the YAC. In this fashion, we have positioned 45 STSs within a contig of 19 independent YACs and constructed a detailed RARE-cleavage map that represents 8.4 Mbp of human chromosome 6p21.3-22. By comparing maps of overlapping YACs, we were able to detect seven internal deletions that ranged from approximately 75 kbp to approximately 1 Mbp in size. Thirteen pairs of EcoRI sites were targeted for double RARE cleavage in uncloned total human DNA. The excised fragments, up to 2 Mbp in size, were resolved by pulsed-field gel electrophoresis and were detected by hybridization. In general, the genomic RARE-cleavage results support the YAC-based map. In one case, the distance in uncloned DNA between the two terminal EcoRI sites of a YAC insert was approximately 1 Mbp larger than the YAC itself, indicating a major deletion. The general concept of RARE-cleavage mapping as well as its applications and limitations are discussed.  相似文献   

10.
An intrinsic feature of yeast artificial chromosomes (YACs) is that the cloned DNA is generally in the same size range (i.e., approximately 200-2000 kb) as the endogenous yeast chromosomes. As a result, the isolation of YAC DNA, which typically involves separation by pulsed-field gel electrophoresis, is frequently confounded by the presence of a comigrating or closely migrating endogenous yeast chromosome(s). We have developed a strategy that reliably allows the isolation of any YAC free of endogenous yeast chromosomes. Using recombination-mediated chromosome fragmentation, a set of Saccharomyces cerevisiae host strains was systematically constructed. Each strain contains defined alterations in its electrophoretic karyotype, which provide a large-size interval devoid of endogenous chromosomes (i.e., a karyotypic "window"). All of the constructed strains contain the kar1-delta 15 mutation, thereby allowing the efficient transfer of a YAC from its original host into an appropriately selected window strain using the kar1-transfer procedure. This approach provides a robust and efficient means to obtain relatively pure YAC DNA regardless of YAC size.  相似文献   

11.
Loss of heterozygosity on chromosome 11q23 is observed at high frequency in human nonsmall cell lung carcinomas (NSCLCs), suggesting the presence of a tumor suppressor gene. Previous analysis of DNA from 79 patients identified a commonly deleted segment of 5 centimorgans. Complementation analysis was used to further localize a putative tumor suppressor gene. Three yeast artificial chromosome (YAC) clones spanning the minimal loss of heterozygosity region were modified, and spheroplast fusion was used to transfer them into human A549 NSCLC or murine Lewis lung carcinoma (LLC) cell lines. The resulting yeast x human hybrid cell lines containing an intact copy of a 1.6-Mb YAC, 939b12, showed reduced growth in vitro. Injection of parental A549 cells into athymic (nu/nu) mice resulted in tumor formation at 27 of 28 injection sites. In contrast, two independent 939b12-containing cell lines formed tumors at only 3 of 20 injection sites. 939b12 also suppressed tumor formation by LLC NSCLC cells in nude mice, but YACs 785e12 and 911f2, which flank 939b12, had no suppressor activity. Further localization of tumor suppression activity on 939b12 was accomplished by introduction of defined fragmentation derivatives into A549 cells and by analysis of YACs that were broken on transfer into LLC cells. This complementation approach localized tumor suppression activity to the central 700 kb of 939b12 and provides a functional assay for positional cloning of this tumor suppressor gene.  相似文献   

12.
13.
CENP-B has been suggested to organize arrays of centromere satellite DNA into a higher order structure which then directs centromere formation and kinetochore assembly in mammalian chromosomes. The N-terminal portion of CENP-B is a 15 kDa DNA binding domain (DBD) consisting of two repeating units, RP1 and RP2. The DBD specifically binds to the CENP-B box sequence (17 bp) in centromere DNA. We determined the solution structure of human CENP-B DBD RP1 by multi-dimensional 1H, 13C and 15N NMR methods. The CENP-B DBD RP1 structure consists of four helices and has a helix-turn-helix structure. The overall folding is similar to those of some other eukaryotic DBDs, although significant sequence homology with these proteins was not found. The DBD of yeast RAP1, a telomere binding protein, is most similar to CENP-B DBD RP1. We studied the interaction between CENP-B DBD RP1 and the CENP-B box by the use of NMR chemical shift perturbation. The results suggest that CENP-B DBD RP1 interacts with one of the essential regions of the CENP-B box DNA, mainly at the N-terminal basic region, the N-terminal portion of helix 2 and helix 3.  相似文献   

14.
Several new genes and markers have recently been identified on the proximal short arm of the human X chromosome in the area of Xp11.23. We had previously generated a YAC contig in this region extending from UBE1 to the OATL1 locus. In this report two polymorphic dinucleotide repeats, DXS6949 and DXS6950, were isolated and characterized from the OATL1 locus. A panel of YAC deletion derivatives from the distal portion of the contig was used in conjunction with the rest of the YAC map to position the new microsatellites and order other markers localizing to this interval. The marker order was determined to be DXS1367-ZNF81-DXS6849-ZNF21-DXS6616-DXS 6950-DXS6949. In the proximal region below OATL1, we have isolated a pair of YACs from the GATA locus, B1026 and C01160. Mapping within these YACs indicates the orientation of DXS1126 and DXS1240, while a cosmid near the OATL1 region reveals the overlap between the YAC contigs from the two loci. This cosmid contains the gene responsible for Wiskott-Aldrich syndrome (WAS) and localizes the disease gene between OATL1 and GATA. These data enable the expansion of the present physical map of the X chromosome from UBE1 to the GATA locus, covering a large portion of the Xp11.23 region. Genetic cross-overs in Xp11.23 support the marker orientation and the position of WAS, contrary to previous reports. With the integration of both physical and genetic maps we have predicted the following marker order: Xpter-UBE1-SYN1/ARAF1/ TIMP1-DXS1367-ZNF81-DXS.6849-ZNF21-DXSy6616++ +-(OATL1, DXS6950-DXS6949)- WAS-(GATA, DXS1126)-DXS1240-Xcen.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

15.
Yeast artificial chromosome (YAC) clones propagate large segments of exogenous DNA in a host organism with well-developed classical and molecular genetics. Most extant YAC clones are from libraries created in a single yeast host (AB1380). The application of techniques allowing the manipulation and/or restructuring of these cloned DNA segments often requires a change in the yeast genetic background to introduce desirable genetic markers. Transfer methods in current use require extremely high yeast transformation efficiencies or require access to equipment for yeast tetrad analysis. We have developed an alternative method for moving YAC clones from one yeast strain to another, taking advantage of the properties of kar1 mutants altered in a gene required for normal karyogamy (nuclear fusion) during mating. Transfer by this method requires generally accessible methods, including yeast cell culture, replica plating, and pulsed-field gel electrophoresis. We present data demonstrating efficient transfer of nine different YACs from their original host (AB1380) to a kar1 recipient strain (YPH925) with genetic markers that facilitate the use of existing homologous recombination-based modification methods. The enhanced ability to transfer clones to this new host will accelerate the pace of refinement and fine-structure mapping of the YAC contigs currently under construction and facilitate gene manipulation on YACs for subsequent functional analysis.  相似文献   

16.
Exon trapping was used to clone portions of genes from the Down syndrome critical region (DSCR) of human chromosome 21. One trapped sequence showed complete homology with nucleotide sequence U20980 (GenBank), which corresponds to the gene for the p60 subunit of the human chromatin assembly factor-1 (CAF1A). We mapped this gene to human chromosome 21 by fluorescence in situ hybridization, by the use of somatic cell hybrids, and by hybridization to chromosome 21-specific YACs and cosmids. The CAF1A gene localizes to YACs 745H11 and 230E8 of the Chumakov et al. (1992, Nature 359: 380) YAC contig, within the DSCR on 21q22. This CAF1A, which belongs to the WD-motif family of genes and interacts with other polypeptide subunits to promote assembly of histones to replicating DNA, may contribute in a gene dosage-dependent manner to the phenotype of Down syndrome.  相似文献   

17.
Niemann-Pick disease type C (NP-C) is an autosomal recessive lipidosis linked to chromosome 18q11-12, characterized by lysosomal accumulation of unesterified cholesterol and delayed induction of cholesterol-mediated homeostatic responses. This cellular phenotype is identifiable cytologically by filipin staining and biochemically by measurement of low-density lipoprotein-derived cholesterol esterification. The mutant Chinese hamster ovary cell line (CT60), which displays the NP-C cellular phenotype, was used as the recipient for a complementation assay after somatic cell fusions with normal and NP-C murine cells suggested that this Chinese hamster ovary cell line carries an alteration(s) in the hamster homolog(s) of NP-C. To narrow rapidly the candidate interval for NP-C, three overlapping yeast artificial chromosomes (YACs) spanning the 1 centimorgan human NP-C interval were introduced stably into CT60 cells and analyzed for correction of the cellular phenotype. Only YAC 911D5 complemented the NP-C phenotype, as evidenced by cytological and biochemical analyses, whereas no complementation was obtained from the other two YACs within the interval or from a YAC derived from chromosome 7. Fluorescent in situ hybridization indicated that YAC 911D5 was integrated at a single site per CT60 genome. These data substantially narrow the NP-C critical interval and should greatly simplify the identification of the gene responsible in mouse and man. This is the first demonstration of YAC complementation as a valuable adjunct strategy for positional cloning of a human gene.  相似文献   

18.
Mice with mutations at the downless (dl) locus have defects in hair follicle, tooth, sweat gland, preputial gland, Meibomian gland, and tail development. The dl phenotype is analogous to the human genetic disorder termed autosomal hypohidrotic (or anhidrotic) ectodermal dysplasia (HED). On the basis of the identification of two related transgenic insertional mutations in the downless gene, yeast artificial chromosomes (YACs) were identified that map to the critical region of mouse Chromosome (Chr) 10. To determine which of the YACs contain the dl gene, we generated YAC transgenic mice by mouse embryo microinjections. The 200-kb YAC B25.D9 was found to rescue all of the downless defects. In addition, the transgenic YAC rescued the dominant Sleek (Dlslk) allele. Since the sequences within the YAC are entirely deleted in one of the transgenic mutants, our results establish that Sleek encodes a dominant-negative protein whose effects can be reversed by expression of extra copies of the wild-type locus.  相似文献   

19.
Yeast artificial chromosome (YAC) transgenesis is associated with a high frequency of deletions in the integrated transgenes. To determine the impact of these rearrangements on the ability to derive structure-function relationships using YACs, transgenic mice were generated with 248 or 155 kb beta-globin locus YACs. The transgenics were examined for structural integrity of the YAC using an approach of structural analysis that unambiguously demonstrates intactness of YAC transgene copies. Globin gene expression per copy of each integrated transgene and the profiles of globin gene expression during development were determined. Diverse deletion patterns were observed in one or more integrated YACs in all the 248 and most of the 155 kb transgenic lines we analyzed. However, when the structure of the major regulatory element of the beta-globin locus, the locus control region, was preserved, the genes of the beta-globin locus functioned normally and globin transgenes of both the 248 and 155 kb beta-YACs were expressed in a position-independent, copy number-dependent manner. Furthermore, the globin genes of both beta-YACs displayed normal developmental regulation. We conclude that YACs can be used for analysis of structure-function relationships of large genes or multigene loci in spite of the tendency for rearrangements and deletions of the integrated transgenes. However, detailed structural evidence for integrity and continuity of locus sequences is required for correct interpretation of functional data.  相似文献   

20.
Thrombocytosis is a characteristic clinical feature in patients with myelocytic malignancies and chromosomal rearrangements of 3q21 and 3q26, sometimes called the '3q21q26 syndrome'. The function of thrombopoietin (TPO) in megakaryocytopoiesis and thrombopoiesis as well as its chromosomal location, marked TPO as a candidate gene for malignancies with 3q rearrangements combined with dysmegakaryopoiesis. In this study 12 cases with inv(3)(q21q26) or t(3;3)(q21;q26) were analyzed by means of PFGE, but no rearrangements near the TPO locus were detectable. Six YACs containing the TPO locus were isolated and characterized. By dual color in situ hybridization using a YAC from 3q26 containing the EVI1 gene and a YAC from the TPO locus, the localization of the human TPO gene could be refined to 3q27-q28 about 15-20 Mbp telomeric to the 3q26 breakpoints occurring in myeloid malignancies. TPO levels were analyzed in the serum of three patients and were found to be in the normal range. These results confirm the findings of two previous studies that thrombopoietin expression is not the main cause of thrombocytosis in the 3q21q26 syndrome.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号