首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The present work deals with a simple transient analysis of a winter greenhouse integrated with a solar still. Explicit expressions for the temperatures of still cover, brine (basin-water), basin of the still/roof of the greenhouse, greenhouse air, plants and floor of the greenhouse have been developed so as to study the transient thermal performance of the system. The effect of several parameters, namely relative humidity, ventilation/infiltration, heat capacity of basin water and plants, etc. has been incorporated in the analysis. On the basis of numerical calculations, some interesting conclusions have been made.  相似文献   

2.
This work presents a simple mathematical model of a greenhouse system whose top surface is covered by a solar still. The effect of various parameters such as relative humidity, ventilation/infiltration, heat capacity of basin water and plants, thickness of roof and water distillate output on the performance of the greenhouse system has been studied. It is found that the proposed system provides fresh water to cater to the needs of plants inside the greenhouse.  相似文献   

3.
4.
Thermal modelling, based on heat and mass transfer relations, of a greenhouse integrated with a solar still has been discussed in detail. The effect of the system (viz. heat capacity of plants/pot mixture, water mass, and orientation, etc.) as well as climatic parameters (solar insolation, ambient air temperature and ventilation due to wind, etc.) have been incorporated in the energy balance for various components of the system in order to validate the theoretical results. An experiment was carried out for a typical greenhouse in Port Moresby. The following observations were made: (i) there is a reasonable agreement between theoretical and experimental results, and (ii) the amount of distilled water obtained is sufficient to grow the plants inside the greenhouse.  相似文献   

5.
State-of-the-art concepts for solar thermal power systems are based on parabolic trough, tower or parabolic disks either heating molten salts, mineral oil, air or generating steam. We propose in this paper, a conceptual design of a solar boiler. This concept comes from the conventional thermal power plants boiler, with the difference that the heat comes from mirrors that concentrate the solar radiation on wall-type array of solar collectors, instead of coming from fuel flames and hot gases. In our preliminary performance, analysis of this innovative solar boiler applied to electricity production, we have found that overall efficiency of the conversion from direct solar irradiation energy to electricity is above 20%, which is comparable to the value of parabolic trough and central tower technologies. Besides that, the concept seems very robust and could overcome some drawbacks derived from pressure losses, control complexity and material thermo-mechanical stress.  相似文献   

6.
Stacked multijunction (tandem) solar cells have been prepared by mechanically stacking dye-sensitised solar cells (DSCs) and a GaAs/AlXGa(1−X)As graded solar cell (GGC) as the top and bottom cells, respectively. Three organic dyes with different absorption spectra (D131, D102 and D205) were used in the DSCs, in order to match the photocurrent density between the DSC and the GGC. Tuning the absorption range of the DSC by choosing an appropriate dye, increased the overall photovoltaic conversion efficiency due to the optimal utilisation of the solar spectrum in the individual cells. The open circuit photovoltages (VOC) of the GGC and the DSC with D131 were 1.11 V and 0.76 V, respectively, resulting in a VOC of 1.85 V and a photovoltaic conversion efficiency of 7.63% for the tandem cell. Although the overall conversion efficiency has not exceeded that of the GGC (7.66%), these tandem cells provide adequate VOC values for water splitting applications.  相似文献   

7.
Accurate estimation of greenhouse gas emissions is essential for developing an appropriate strategy to mitigate global warming. This study examined the characteristics of greenhouse gas emission from power plants, a major greenhouse gas source in Korea. The power plants examined use bituminous coal, anthracite, and sub-bituminous coal as fuel. The CO2 concentration from power plants was measured using GC–FID with methanizer. The amount of carbon, hydrogen, and calorific values in the input fuel was measured using an elemental analyzer and calorimeter. For fuel analysis, CO2 emission factors for anthracite, bituminous coal, and sub-bituminous coal were 108.9, 88.4, and 97.9 Mg/kJ, respectively. The emission factors developed in this study were compared with those for IPCC. The results showed that CO2 emission was 10.8% higher for anthracite, 5.5% lower for bituminous coal, and 1.9% higher for sub-bituminous coal than the IPCC figures.  相似文献   

8.
Usual size of parabolic trough solar thermal plants being built at present is approximately 50 MWe. Most of these plants do not have a thermal storage system for maintaining the power block performance at nominal conditions during long non-insolation periods. Because of that, a proper solar field size, with respect to the electric nominal power, is a fundamental choice. A too large field will be partially useless under high solar irradiance values whereas a small field will mainly make the power block to work at part-load conditions.This paper presents an economic optimization of the solar multiple for a solar-only parabolic trough plant, using neither hybridization nor thermal storage. Five parabolic trough plants have been considered, with the same parameters in the power block but different solar field sizes. Thermal performance for each solar power plant has been featured, both at nominal and part-load conditions. This characterization has been applied to perform a simulation in order to calculate the annual electricity produced by each of these plants. Once annual electric energy generation is known, levelized cost of energy (LCOE) for each plant is calculated, yielding a minimum LCOE value for a certain solar multiple value within the range considered.  相似文献   

9.
Thermal energy production from fossil fuels is very common in many applications, especially in industrial processes. In a global context where great attention is being focused on reducing pollution and greenhouse gas production, the integration of renewable energy in industrial applications is very interesting. This is even more important considering that greenhouse gas emission for industrial processes is a great portion of their total emission. Considering the above, it appears that the integration of high temperature solar panels in industrial processes is quite an attractive prospect. The working temperatures of parabolic solar collectors are, for example, generally close to those of the thermal fluids used in many industrial processes, and parabolic solar collectors are a well known technology with several applications primarily used in electric production systems. Nonetheless, only a few examples of industrial integration have been studied or built. In this study, the integration of a concentrating solar thermal plant in a textile factory has been examined both from the thermodynamic and economic point of view. An existing textile factory was chosen as a case study and its annual consumption of thermal energy characterized. A model of the plant with solar energy integration was developed and simulated with TRNSYS over a one year time period. The plant was simulated considering the panel characteristics provided by the manufacturer and the local irradiation data. The influence of several plant parameters has been investigated in order to estimate their importance on performance and plant suitability.  相似文献   

10.
This paper has analysed the effect of the utilization of internal finned tubes for the design of parabolic trough collectors with computational fluid dynamics tools. Our numerical approach has been qualified with the computational estimation of reported experimental data regarding phenomena involved in finned tube applications and solar irradiation of parabolic trough collector. The application of finned tubes to the design of parabolic trough collectors must take into account features as the pressure losses, thermal losses and thermo-mechanical stress and thermal fatigue. Our analysis shows an improvement potential in parabolic trough solar plants efficiency by the application of internal finned tubes.  相似文献   

11.
Direct steam generation (DSG) is the process by which steam is directly produced in parabolic trough fields and supplied to a power block. This process simplifies parabolic trough plants and improves cost effectiveness by increasing the permissible temperature of the working fluid. Similar to all solar‐based technologies, thermal energy storage is needed to overcome the intermittent nature of solar. In the present work, an innovative DSG‐based parabolic trough collector (PTC) plant hybridized with a biomass boiler is proposed and analyzed in detail. Two additional configurations comprising indirect steam generation PTC plants were also analyzed to compare their energy and exergy performance. To consider a wide range of operation, the share of biomass input to the hybridized system is varied. Energy and exergy analyses of DSG are conducted and compared with an existing indirect steam generation PTC power plants such as Andasol. The analyses are conducted on a 50 MW regenerative reheat Rankine cycle. The results obtained indicate that the proposed DSG‐based PTC plant is able to increase the overall system efficiency by 3% in comparison with indirect steam generation when linked to a biomass boiler that supplies 50% of the energy.  相似文献   

12.
Most of solar radiation incident on a greenhouse is absorbed by greenhouse components (i.e., the cover, humid air, plants and soil) and the remaining portion is lost to outside the greenhouse. It is essential to know the absorbed and lost energy terms for any thermal analysis of greenhouses. Existing greenhouse thermal models use the radiative properties of the greenhouse components to directly determine the absorbed energy terms. However, these models neglect the lost energy term and neglect the effects of the multiple reflections of solar radiation between the greenhouse components.The present study describes the general relations for estimating the amounts of solar energy absorbed by the greenhouse components and lost to outside the greenhouse. The relations take into consideration the interrelations as well as the multiple reflections of solar radiation between these components. Thus, the greenhouse system was treated as a solar collector having an absorber plate (i.e., the greenhouse soil) and a cover system consisting of three semi-transparent parallel layers (i.e., the greenhouse cover, the humid air, and the plants). Superposition theory and ray tracing technique were used for the analysis. The presented relations were applied to an experimental plastic-covered greenhouse with a floor area of 34 m2. The greenhouse, located in Riyadh, Saudi Arabia, was planted with tomatoes with a leaf area index (LAI) of 3.0 and was cooled by a wet pad and fan system. Results of the presented relations were accurate and more realistic comparing to results of other relations reported in the literatures. Absorption of solar radiation by water vapor in the greenhouse was negligible. The presented relations can estimate the absorbed and lost energy terms for a greenhouse precisely with a max possible error of +1.8% on each term if the LAI was less than 1.5. The error is significantly decreased to less than +0.7% if the LAI in the greenhouse is increased to 5.  相似文献   

13.
The paper deals with the preliminary design and optimization of cogenerative solar thermodynamic plants for industrial users. The considered plants are all based on proven parabolic trough technology, but different schemes have been analyzed: from a conventional configuration with indirect steam cycle and a heat transfer fluid such as synthetic oil or molten salts, to a more innovative arrangement with direct steam generation in the solar field. Thermodynamic parameters of the steam cycle have been optimized considering some constraints due to the heat requirements of the user, leading to a preliminary design of the main components of the system and an estimation of costs. Resulting net electric efficiency is about 10% for conventional synthetic oil plant, while 13% for innovative molten salts and DSG.A comparison with conventional solar thermodynamic systems for electricity production and photovoltaic power plants shows the economic and energetic benefits of the cogenerative solution. Cost of electricity for solar plant is cheaper of about 20 €/MWh than conventional solar power application. Moreover, heat recovery allows to achieve a further 50% of CO2 emission savings compared to reference solar plants for only electricity production.  相似文献   

14.
Greenhouses are needed in hot climates to protect plants from excessive heat, which limits productivity, and to reduce the excessive energy and water requirements associated with controlled environment agriculture under such conditions. In Kuwait, where ambient air temperature can reach 50°C during the summer and where fresh water is scarce, a new approach to greenhouse design was used. This approach included passive, as well as active, energy conservation measures, which made the utilization of such a greenhouse economically feasible. A computer program is proposed here for greenhouse design in Kuwait, aimed mainly at reducing the cooling load in an arid climate. It takes into consideration the climate, the material and the geometry of the greenhouse. The concept is to reduce the amount of intense solar radiation received in Kuwait (infrared radiation) but to maximize the amount of the solar spectrum needed for plants, as well as control the other environmental factors.  相似文献   

15.
In order to reduce the cost and improve the efficiency of daylighting, an innovative parabolic trough solar lighting and thermal (PTL/T) system is designed and analyzed in this paper. Parabolic trough solar lighting and thermal system uses parabolic trough collector (PTC) controlled by two‐axis solar tracking system as solar collector. The collected sunlight is split by a cold mirror into visible light and infrared. The visible light is reflected by cold mirror, re‐concentrated by a second‐stage Fresnel lens, and then delivered by plastic optical fiber to the buildings for daylighting. The infrared goes through cold mirror, reaches thermal system, and is used for heating generation. The basic structure of PTL/T was outlined and described. The dimension of fiber bundle and parabolic trough was chosen after an optimal analysis. The cost of illuminating unit area was expressed as a function of illumination space dimensions and critical components efficiency. A case study was conducted to get a specific optimized illumination area and PTC area for the first time. The optimized result is to use 8‐m2 PTC as collector to illuminate 500‐m2 office space. The total solar energy utilization efficiency is 39.4%, with the lighting efficiency of 16.3% and thermal efficiency of 23.1%. The maximum energy savings and simple payback period were calculated for 10 typical cities when applied in residential, commercial, and industrial sectors. The amounts of greenhouse gas‐emission reductions were also calculated. The payback period in Sunbelt region is as low as less than 10 years like in Los Angeles. The results show the proposed PTL/T system is competitive compared with traditional solar energy systems. Copyright © 2016 John Wiley & Sons, Ltd.  相似文献   

16.
N. Naeeni  M. Yaghoubi   《Renewable Energy》2007,32(11):1898-1916
Applications of parabolic collectors for solar heating and solar thermal power plant increased in the recent years. Most of the solar power plants installed with parabolic collectors are on flat terrain and they may be subjected to some environmental problems. One of problems for large parabolic collector is their stability to track the sun with respect to time very accurately. Any small off tracking as well as the collector structure stability will be affected by strong wind blowing for the regions where the wind velocity is high.In the present study, a two-dimensional numerical simulation of turbulent flow around a parabolic trough collector of the 250 kW solar power plants in Shiraz, Iran is performed taking into account the effects of variation of collector angle of attack, wind velocity and its distribution with respect to height from the ground.Computation is carried for wind velocity of 2.5, 5, 10, and 15 m/s and collector angles of 90°, 60°, 30°, 0°, −30°, −60°, and −90° with respect to wind directions. Various recirculation regions on the leeward and forward sides of the collector are observed, and both pressure field around the collector and total force on the collector are determined for each condition. The effect of absorber tube on the flow field was found negligible, while the effect of the gap between the two sections of parabola at midsection and the gap between the collector and ground were found considerable on both flow field and pressure distribution around the collector.  相似文献   

17.
Modelling solar energy input in greenhouses   总被引:1,自引:0,他引:1  
A semi one-dimensional climate model was used to investigate the relative importance of the constructional parameters that influence the solar energy collecting efficiency of greenhouses under Western European conditions. Parameters investigated were the transmittance of the greenhouse frame, the radiometric properties of the greenhouse cladding and the floor, as well as the type of condensation (as a film or as drops). Their effect on the auxiliary heating requirements and the several solar energy fluxes in the greenhouse were simulated for a year-round tomato crop. The results pointed out that greenhouses catch about two thirds of the solar radiation available. This rather poor efficiency is due to the fact that greenhouses are fixed constructions, so their efficiency highly depends on their position and geometry, which are mainly determined by horticultural constraints. Most of the solar energy entering the greenhouse was found to be absorbed by the vegetation. Auxiliary heating requirements were hardly influenced by changes of the frame or cladding transmittances, although the transmittance reduction caused by condensation as hemispherical drops caused a 2.8% increase of the energy demand. The floor characteristics had an impact on the greenhouse energy demand and on the amount of solar energy available to the canopy, only for small plants on an almost uncovered floor.  相似文献   

18.
Issues of utilization of heat of products “breathing” and ventilation emissions of green houses are reviewed for feeding plants with carbon dioxide in a solar greenhouse. Efficiency of joint use of a greenhouse and solar greenhouses is shown to support the temperature-gas mode.  相似文献   

19.
Javier Muñoz 《Solar Energy》2011,85(3):609-612
The heterogeneous incoming heat flux in solar parabolic trough absorber tubes generates huge temperature difference in each pipe section. Helical internal fins can reduce this effect, homogenising the temperature profile and reducing thermal stress with the drawback of increasing pressure drop. Another effect is the decreasing of the outer surface temperature and thermal losses, improving the thermal efficiency of the collector. The application of internal finned tubes for the design of parabolic trough collectors is analysed with computational fluid dynamics tools. Our numerical approach has been qualified with the computational estimation of reported experimental data regarding phenomena involved in finned tube applications and solar irradiation of parabolic trough collector. The application of finned tubes to the design of parabolic trough collectors must take into account issues as the pressure losses, thermal losses and thermo-mechanical stress, and thermal fatigue. Our analysis shows an improvement potential in parabolic trough solar plants efficiency by the application of internal finned tubes.  相似文献   

20.
Direct steam generation in parabolic trough or linear Fresnel collectors represents one interesting technological option for concentrating solar electricity production. Today's state of the art characterized by the first commercial plants in operation is a result of more than 20 years of intensive research on this topic. This article provides a review on the key results from research that includes physical effects like heat transfer and pressure drop in horizontal boiler tubes, plant layout considerations, and thermal storage options. An overview on test and demonstration facilities as well as on commercial plants is given, leading to an outlook on the next generation of direct steam generation systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号