首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Anaerobic digestion is an effective technology to convert cellulosic wastes to methane and hydrogen. Heat-treatment is a well known method to inhibit hydrogen-consuming bacteria in using anaerobic mixed cultures for seeding. This study aims to investigate the effects of heat-treatment temperature and time on activated sludge for fermentative hydrogen production from alpha-cellulose by response surface methodology. Hydrogen and methane production was evaluated based on the production rate and yield (the ability of converting cellulose into hydrogen and methane) with heat-treated sludge as the seed at various temperatures (60-97 degrees C) and times (20-60 min). Batch experiments were conducted at 55 degrees C and initial pH of 8.0. The results indicate that hydrogen and methane production yields peaked at 4.3 mmol H2/g cellulose and 11.6 mmol CH4/g cellulose using the seed activated sludge that was thermally treated at 60 degrees C for 40 min. These parameter values are higher than those of no-treatment seed (HY 3.6 mmol H2/g cellulose and MY 10.4 mmol CH4/g cellulose). The maximum hydrogen production rate of 26.0 mmol H2/L/d and methane production rate of 23.2 mmol CH4/L/d were obtained for the seed activated sludge that was thermally treated at 70 degrees C for 50 min and 60 degrees C for 40 min, respectively.  相似文献   

2.
Landfill leachate is one of the most recalcitrant wastes for biotreatment and can be considered a potential source of contamination to surface and groundwater ecosystems. In the present study, Fenton oxidation was employed for degradation of stabilized landfill leachate. Response surface methodology was applied to analyze, model and optimize the process parameters, i.e. pH and reaction time as well as the initial concentrations of hydrogen peroxide and ferrous ion. Analysis of variance showed that good coefficients of determination were obtained (R2 > 0.99), thus ensuring satisfactory agreement of the second-order regression model with the experimental data. The results indicated that, pH and its quadratic effects were the main factors influencing Fenton oxidation. Furthermore, antagonistic effects between pH and other variables were observed. The optimum H2O2 concentration, Fe(II) concentration, pH and reaction time were 0.033 mol/L, 0.011 mol/L, 3 and 145 min, respectively, with 58.3% COD, 79.0% color and 82.1% iron removals.  相似文献   

3.
The feasibility of integrating biological hydrogen and methane production in a two-stage process using mixed cultures and cheese whey powder (CWP) as substrate was studied. The effect of operational parameters such as hydraulic retention time (HRT) and organic loading rate (OLR) on the volumetric hydrogen (VHPR) and methane (VMPR) production rates was assessed. The highest VHPR was 28 L H2/L/d, obtained during stable operation in a CSTR at HRT and OLR of 6 h and 142 g lactose/ L/d, respectively. Moreover, hydrogen (13 L/L/d) was produced even at HRT as low as 3.5 h and OLR of 163 g lactose/L/d, nonetheless, the reactor operation was not stable. Regarding methane production in an UASB reactor, the acidified effluent from the hydrogen-producing bioreactor was efficiently treated obtaining COD removals above 90% at OLR and HRT of 20 g COD/L/d and 6 h, respectively. The two-stage process for continuous production of hydrogen and methane recovered over 70% of the energy present in the substrate. This study demonstrated that hydrogen production can be efficiently coupled to methane production in a two-stage system and that CWP is an adequate substrate for energy production.  相似文献   

4.
The effects of calcium ions on a granular fermentative hydrogen production system were investigated in four lab-scale UASB reactors that fed on sucrose (20 g COD/L). The reactors were seeded with anaerobic sewage sludge microflora and operated at a temperature of 35 +/- 1 degrees, pH of 6.7 with hydraulic retention times (HRTs) of 24-6h. The experimental results indicated that calcium ion addition (75 - 150 mg/L) could enhance the granulation and elevate hydrogen production efficiency. However, an overly-high calcium concentration (300 mg-Ca(+2)/L) deteriorated the hydrogen productivity. A calcium concentration of 150 mg-Ca(+2)/L resulted in a peak HP of 3.6 mol H2/mol-sucrose and HPR of 807 mmol-H2/L-d at HRTs of 8 and 6 h, respectively. The EPS concentration of biohydrogenic biomass was higher than that of the aerobic or methanogenic biomass. The protein/carbon-ratio ranged from 0.17 to 0.26%. The multinomial regression analysis shows that the 75 - 150 mg-Ca(+2)/L calcium concentrations and HRT of 6 h were the optimal operating conditions to efficiently produce hydrogen.  相似文献   

5.
The sequencing batch reactor (SBR) process concept was applied to achieve efficient ammonium removal via nitrite under both laboratory and pilot-scale conditions. Both sets of experimental results show that without pH control or carbon addition the nitritation process consistently converted approximately 50% of the ammonium from biosolids dewatering liquids to nitrite with hydraulic retention times (HRT) as short as 10 h. The results from the pilot-scale study also indicate that the selective oxidation of ammonium to nitrite is a reliable process as the accumulation of nitrate was never an issue during a 330-day trial. The SBR process concept was extended to achieve complete nitrogen removal through nitritation and denitritation in the laboratory scale. The experimental results indicate that a total reduction of 96-98% of the ammonium nitrogen from biosolids dewatering liquids (influent concentration typically 1,200 g m(-3)) was achieved with a short HRT of 1.1 d and a removal rate of 1.05 kgNm(-3)d(-1). This process concept was tested at pilot scale where the nitritation process could be started up without temperature control in a short period of time. Nitrogen removal rates up to 1.2 kgNm(-3)d(-1) at an HRT of 0.88 d have been obtained. COD to nitrogen ratios required in the pilot plant were consistently in the range 1.6-1.9 kgCOD kg(-1)N removed.  相似文献   

6.
The effect of hydraulic retention time(HRT) and pH on the biooxidation of ferrous iron during simulated acid mine drainage(AMD)treatment was investigated.The simulated AMD was highly acidic(pH 2.5),rich in iron(about 1700 mg/L) and copper(about 200 mg/L),and contained high concentrations of sulfate(about 4700 mg/L).The biooxidation of ferrous iron was studied in a laboratory-scale upflow packed bed bioreactor(PBR).The HRT was shortened stepwise from 40 h to 20 h,13 h,and 8 h under the acidic environment at a pH value of 2.2.Then,the influent pH value was changed from 2.2 to 1.2 at a constant suitable HRT.Physiochemical and microbial community structure analyses were performed on water samples and stuffing collected from the bioreactor under different conditions.The results indicate that the efficiency of ferrous iron oxidation gradually decreased with the decrease of HRT,and when the HRT exceeded 13 h,ferrous iron in AMD was almost completely oxidized.In addition,the best efficiency of ferrous iron oxidation was achieved at the influent pH value of 1.8.Microbial community structure analyses show that Leptospirillum is the predominant genus attached in the bioreactor,and low influent pH values are suitable for the growth of Leptospirillum.  相似文献   

7.
Hydrogen can be produced by fermentation of organic wastes as a renewable CO2 emission free fuel. The production potential as a function of feed composition is investigated using the ADM1 and experimental data from the literature. Lactate and ethanol are included in the model as intermediates to simulate the bio-hydrogen production processes more closely. Simulated effects of carbohydrate to protein ratio in the feed on pH, H2, biomass and fatty acid production using standard model parameters compare quite well with experimental results. The overall hydrogen and biomass production corresponds well with measurements for some feeds and less for others. The maximum theoretical yield is significantly higher than the simulated and measured values and is highest when the feed consists of only carbohydrates. The analysis suggests that the modified ADM1 is capable of simulating the main mechanisms involved in biological hydrogen production processes, implying that the model can be used to identify, and find strategies to influence limiting factors in bio-hydrogen production processes. Model weaknesses regarding the acidogenesis processes are observed and areas for further improvements discussed.  相似文献   

8.
Fermentative hydrogen production from a synthetic wastewater containing 10 g/L of sucrose was studied in two upflow reactors at 26 degrees C for 400 days. One reactor was filled with packing rings (RP) and the other was packing free (RF). The effect of hydraulic retention time (HRT) from 2 h to 24 h was investigated. Results showed that, under steady state, the hydrogen production rate significantly increased from 0.63 L/L/d to 5.35 L/L/d in the RF when HRT decreased from 24 h to 2 h; the corresponding rates were 0.56 L/L/d to 6.17 L/L/d for the RP. In the RF, the hydrogen yield increased from 0.96 mol/mol-sucrose at 24 h of HRT to the maximum of 1.10 mol/mol-sucrose at 8 h of HRT, and then decreased to 0.68 mol/mol-sucrose at 2 h. In the RP, the yield increased from 0.86 mol/mol-sucrose at 24 h of HRT to the maximum of 1.22 mol/mol-sucrose at 14 h of HRT, and then decreased to 0.78 mol/mol-sucrose at 2 h. Overall, the reactor with packing was more effective than the one free of packing. In both reactors, sludge agglutinated into granules. The microbial community of granular sludge in RP was investigated using 16S rDNA based techniques. The distribution of bacterial cells and extracellular polysaccharides in hydrogen-producing granules was investigated by fluorescence-based techniques. Results indicated that most of the N-acetyl-galactosamine/galactose-containing extracellular polysaccharides were distributed on the outer layer of the granules with a filamentous structure.  相似文献   

9.
This paper deals with the optimization of a two-phase anaerobic process treating biowaste for hydrogen and methane production. Neither physical nor chemical pre-treatments were used to optimize the process. The work was carried out at pilot scale, using two CSTRs (200 and 380 L working volume respectively) both maintained at thermophilic temperature (55 C) and fed semi-continuously with biowaste. The experiment was divided into three periods; during the first two periods the organic loading rate was maintained at 20 kg TVS/m3 d and the hydraulic retention time was changed from 6.6 to 3.3 days, while in the last period the digestate of the second reactor was recirculated to the first reactor in order to buffer the system and control pH at levels around 5. The HRT was maintained at 3.3 days and the OLR was decreased at 16.5 kg TVS/m3 d. The best yield was obtained in the last period where a specific hydrogen production of 50.9 L/kg VSfed was reached, with a H2 content in biogas from the first reactor of 36%. The methanogenic stage after the hydrogen conversion reached a specific biogas production of 0.62 m3/kg VSfed and an overall organic removal above 70%, without any stability problem. The overall biogas production was some 1.5 m3 per day with a gas composition of 10% H2 and 50% CH4.  相似文献   

10.
An anaerobic hybrid reactor (UASB/Filter) was used for petrochemical wastewater treatment in mesophilic conditions. The seeded flocculent sludge from a UASB plant treating dairy wastewater, acclimatized to the petrochemical wastes in a two-stage operation. After start up, under steady-state conditions, experiments were conducted at OLRs of between 0.5 and 24 kg TCOD m(-3) d(-1), hydraulic retention times (HRT) of 4-48 h and up-flow velocities 0.021-0.25 mh(-1). Removal efficiencies in the range of 42-86% were achieved at feed TCOD concentrations of 1,000-4,000 mg L(-1). The results of reactor performance at different operational conditions and its relations are presented and discussed in this paper. Then, the obtained data are used for determination of kinetic models. The results showed that a second-order model and a modified Stover-Kincannon model were the most appropriate models for this reactor. Finally, the biogas production data were used for the determination of biogas production kinetics.  相似文献   

11.
The potential of anaerobic digestion in ecological and decentralised sanitation has been investigated in this research. Different anaerobic digestion systems were proposed for the treatment of sewage, grey water, black water and faeces. Moreover, mathematical models based on anaerobic digestion model no.1 (ADM1) were developed for determination of a suitable design for each system. For stable performance of an upflow anaerobic sludge blanket (UASB) reactor treating sewage, the model results indicated that optimisation of wastewater conversion to biogas (not COD removal) should be selected for determination of the hydraulic retention time (HRT) of the reactor. For the treatment of sewage or black water in a UASB septic-tank, the model results showed that the sludge removal period was the main parameter for determination of the HRT. At such HRT, both COD removal and wastewater conversion are also optimised. The model results demonstrated that for treatment of faeces in an accumulation (AC) system at temperature > or = 25 degrees C, the filling period of the system should be higher than 60 days. For maximisation of the net biogas production (i.e. reduction of biogas losses as dissolved in the effluent), the separation between grey water, urine and faeces and reduction of water consumption for faeces flushing are required. Furthermore, the faeces and kitchen organic wastes and grey water are digested in, respectively, an AC system and UASB reactor, while the urine is stored.  相似文献   

12.
A series of batch experiments investigating two different pH control strategies, initial pH adjustment and continuous pH control, have been carried out in large laboratory-scale reactors with working volumes of 30 L. In both cases, pH was varied between 5 and 7.5. Sucrose concentrations were also varied starting from 0 up to 30 g/L. Higher hydrogen production yields can be achieved by batch experiments through continuous pH control than by simple initial pH adjustment. In the case of continuous pH control, maximization of hydrogen yield was acquired for slightly acidic pH of 6.5. Continuous pH control in the neutral pH range of 7.0 and in pH lower than 6.5, induced a reduction in the hydrogen production yield. Sucrose can be completely degraded only for a pH higher than 6. Lower pH values seem to inhibit the hydrogen-producing bacteria. Under the conditions of continuous pH adjustment at pH 6.5 and a sucrose concentration of 25 g/L the maximum hydrogen yield of 1.79 mol H(2)/mol hexose was obtained. These conditions could be applied for the batch start-up of large fermentors.  相似文献   

13.
To enhance the efficiency of nitrate removal from synthetic groundwater, wheat rice stone (WRS) and granular activated carbon (GAC) were employed as biofilm carriers for denitrification under different HRT (hydraulic retention time) and C/N ratios. Four different ratios of GAC to WRS (0, 0.5, 1.0, and 2.0) were investigated to determine the most appropriate ratio of GAC and WRS. The NO(3)(-)-N, NO(2)(-)-N, COD levels and pH of the effluent were also investigated under various HRT and C/N ratios. The results showed that the column at a GAC/WRS ratio of 1.0 performed best under a C/N ratio of 0.9 and an HRT of 8 h, with 99% nitrate being removed. In addition, little nitrite accumulation and chemical oxygen demand (COD) were observed in effluent under these conditions. These results demonstrated that, with no addition of phosphor in the influent, the nitrate removal efficiency can be enhanced by WRS because WRS can leach trace elements and phosphor to promote the growth of bacteria.  相似文献   

14.
In many parts of the world there are significant seasonal variations in the production of the main organic wastes, food and green wastes. These waste types display significant differences in their biodegradation rates. This study investigated the options for ensuring process stability during the start up and operation of thermophilic high-solids anaerobic digestion of feedstock composed of varying proportions of food and green wastes. The results show that high seed sludge to feedstock ratio (or low waste loading rate) is necessary for ensuring process pH stability without chemical addition. It was also found that the proportion of green wastes in the feedstock can be used to regulate process pH, particularly when operating at high waste loading rates (or low seed sludge to feedstock ratios). The need for chemical pH correction during start-up and digestion operation decreased with increase in green wastes content of the feedstock. Food wastes were found to be more readily biodegradable leading to higher solids reduction while green wastes brought about pH stability and higher digestate solid content. Combining both waste types in various proportions brought about feedstock with varying buffering capacity and digestion performance. Thus, careful selection of feedstock composition can minimise the need for chemical pH regulation as well as reducing the cost for digestate dewatering for final disposal.  相似文献   

15.
As is well known, carbohydrate is the most appropriate organic material for hydrogen fermentation, and its hydrogen yield is significantly larger than that of protein. The fermentation of protein began with hydrogen production followed by hydrogen consumption, which helps overall hydrogen recovery. Both carbohydrate and protein are basic components of organic material, and yet carbohydrate is known to be a better substrate than protein in terms of hydrogen yield during hydrogen fermentation. This study used multiple substrates containing different ratios of glucose and peptone as multiple substrates to investigate the roles played by carbohydrate and protein in hydrogen fermentation. The experimental results demonstrated that suitable ratios of glucose and peptone improved the growth of hydrogen producing bacteria. Additionally, a maximum hydrogen yield of 6.4 mmole-H2/g-COD was obtained from the multiple substrate containing 40% peptone and 60% glucose. Most of the produced hydrogen came from fermentation of glucose, not peptone. During hydrogen fermentation, the pH dropped by 1.0 and 1.9 units in 80% and 20% of peptone content in the substrate. Ammonia produced due to peptone degradation neutralized the acids produced from hydrogen fermentation.  相似文献   

16.
A promising system consisting of Up-flow Anaerobic Sludge Blanket (UASB) and Down-Flow Hanging Sponge (DHS) system was investigated for removal of COD, BOD(5) fractions, ammonia and faecal coliform from domestic wastewater. The combined system was operated at different HRTs of 16, 11 and 8 h. The results indicate that increasing the total HRT from 8 to 16 h significantly (p < 0.05) improves the COD(total) and BOD(5 total) removal mainly as a result of a higher removal of COD(soluble), BOD(soluble), COD(particulate) and BOD(particulate). The main part of coarse suspended solids was removed in the UASB reactor (76.4+/-18%) and the remaining portion was adsorbed and/or enmeshed and degraded in the biomass of the DHS system. The combined system achieved a substantial reduction of total suspended solids (TSS) resulting in an average overall percentage removal of 94+/-6% (HRT = 16 h) and 89.5+/-7.8% (HRT = 8 h). Faecal coliform reduction was significantly improved when increasing the total HRT from 8 to 16 h. Residual counts of faecal coliform were 3.1 x 10(3)/100 ml at a total HRT of 16 h, and 2.8 x 10(4)/100 ml at total HRT of 8 h, corresponding to overall removal efficiency of 99.97+/-0.03 and 99.6+/-0.3% respectively. Despite the increase of ammonia concentration as a result of protein hydrolysis in the UASB reactor, a substantial removal of ammonia was achieved in the DHS system. The results obtained show that decreasing the OLR imposed to DHS system from 2.6 to 1.6 kg COD/m(3).d significantly (p < 0.05) improves the removal efficiency of ammonia by a value of 29%. However, the removal efficiency of ammonia is not further increased when decreasing the OLR from 1.6 to 1.3 kg COD/m(3).d. The discharged sludge from UASB + DHS system exerts a good settling property and partially stabilized.DHS profile results have shown that the major part of COD, BOD(5), and TSS was removed in the upper part of the system, consequently, the nitrification process was occurring in the lower part of the DHS system.  相似文献   

17.
This study was conducted to compare the performance of a continuous-flow stirred-tank reactor (CSTR) and an anaerobic sequencing batch reactor (ASBR) for fermentative hydrogen production at various substrate concentrations. Heat-treated anaerobic sludge was utilized as an inoculum, and hydraulic retention time (HRT) for each reactor was maintained at 12 h. At the influent sucrose concentration of 5 g COD/L, start-up was not successful in both reactors. The CSTR, which was started-up at 10 g COD/L, showed stable hydrogen production at the influent sucrose concentrations of 10-60 g COD/L during 203 days. Hydrogen production was dependent on substrate concentration, resulting in the highest performance at 30 g COD/L. At the lower substrate concentration, the hydrogen yield (based on hexose consumed) decreased with biomass reduction and changes in fermentation products. At the higher substrate concentration, substrate inhibition on biomass growth caused the decrease of carbohydrate degradation and hydrogen yield (based on hexose added). The ASBR showed higher biomass concentration and carbohydrate degradation efficiency than the CSTR, but hydrogen production in the ASBR was less effective than that in the CSTR at all the substrate concentrations.  相似文献   

18.
The capacity of a pilot project subsurface flow constructed wetland in the tropics to remove phenol from pre-treated pulp and paper mill wastewater was studied under varying hydraulic retention times (HRT) with batch loading. Initial 15 months results indicate that removal efficiencies for phenol were variable but on average reached 60% at 5-day HRT and 77% at 3-day HRT. It was thought that the longer retention time might have caused oxygen and nutrient deficiencies, which may have reduced removal performance. Although phenol was sometimes not detectable in the wetland outflow, on average values over the experimental period did not meet set national guidelines. In the ongoing study, the impact of varying hydraulic retention time and/or loading rate on the removal of phenols will be evaluated and the main removal process established.  相似文献   

19.
Surfactant wastewater is usually difficult to treat due to its toxicity and poor biodegradability. A separate physico-chemical or biochemical treatment method achieves a satisfactory effect with difficulty. In this study, treatment of the wastewater collected from a daily chemical plant by the combination processes of Fe/C internal electrolysis and biological contact oxidation was investigated. For the internal electrolysis process, the optimal conditions were: pH = 4-5, Fe/C = (10-15):1, air-water ratio = (10-20):1 and hydraulic retention time (HRT)= 2 h. For the biological contact oxidation process, the optimal conditions were: HRT = 12 h, DO = 4.0-5.0 mg/L. Treated by the above combined processes, the effluent could meet the I-grade criteria specified in Integrated Wastewater Discharge Standard of China (GB 8978-1996). The results provide valuable information for full-scale linear alkylbenzene sulfonate wastewater treatment.  相似文献   

20.
The performance of a novel high-rate anaerobic process, the anaerobic digestion elutriated phased treatment (ADEPT) process, for treating a slurry-type piggery waste (55 g COD/L and 37 g TS/L) was investigated. The ADEPT process consists of an acid elutriation slurry reactor for hydrolysis and acidification, followed by an upflow anaerobic sludge bed reactor for methanification. This process provides stable and high system performance with short HRT (7.4 d) and better effluent quality (2 g SCOD/L and 0.68 g VSS/L) due to the alkaline pH condition for hydrolysis/acidification phase, high refractory solids removal and ammonia toxicity reduction. The optimum pH and HRT for hydrolysis/acidogenesis of the piggery waste were 9 and 5 days at both 35 degrees C and 55 degrees C conditions. The hydrolysis and acidification rate in the mesophilic reactor were 0.05 d(-1) and 0.11 d(-1), meaning that hydrolysis was a limiting step. SCOD production by the hydrolysis was about 0.26 g SCOD/g VS(fed) (3.6 g SCOD/g VS reduction). Methane production and content in the system were 0.3 L CH4/g VS(fed) (0.67 L CH4/g VS destroyed) and 80%, respectively, corresponding to 0.23 L CH4/g COD removal (@STP).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号