首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This study evaluates the changes in CO2 emissions from energy consumption in Brazil for the period 1970–2009. Emissions are decomposed into production and consumption activities allowing computing the full set of energy sources consumed in the country. This study aims to develop a comprehensive and updated picture of the underlying determinants of emissions change from energy consumption in Brazil along the last four decades, including for the first time the recently released data for 2009. Results demonstrate that economic activity and demographic pressure are the leading forces explaining emission increase. On the other hand, carbon intensity reductions and diversification of energy mix towards cleaner sources are the main factors contributing to emission mitigation, which are also the driving factors responsible for the observed decoupling between CO2 emissions and economic growth after 2004. The cyclical patterns of energy intensity and economy structure are associated to both increments and mitigation on total emission change depending on the interval. The evidences demonstrate that Brazilian efforts to reduce emissions are concentrated on energy mix diversification and carbon intensity control while technology intensive alternatives like energy intensity has not demonstrated relevant progress. Residential sector displays a marginal weight in the total emission change.  相似文献   

2.
Most previous studies have studied the relationship among urbanization, energy use, and CO2 emissions. In this paper, Ordinary Least Square (OLS), Fixed Effects (FE), Prais–Winsten (PW), and First Differenced (FD) regression model approaches are applied to analyze the correlation among urbanization, energy use, and CO2 emissions in the interior provinces and eastern/coastal provinces of China. The results show that the impact of urbanization on CO2 emissions is not homogenous for all provinces. The eastern/coastal provinces have a different elasticity with respect to per capita Gross Domestic Product (GDP) and urbanization than the interior provinces. Also, it’s possible an Environmental Kuznets Curve (EKC) exists for the eastern provinces but not for China as a whole.  相似文献   

3.
This paper examines the driving forces for reducing China’s CO2 emission intensity between 1998 and 2008, utilizing the logarithmic mean divisia index (LMDI) technique. By first grouping the CO2 emissions into two categories, those arising from activities related to the electric power industry and those from other sources, emission intensity is further broken down into the effects of the CO2 emission coefficient, energy intensity of power generation, power generation and consumption ratio, electricity intensity of the gross domestic product (GDP), provincial structural change, and the energy intensity of the GDP for other activities. The decomposition results show that improvements in the energy intensity of power generation, electricity intensity of GDP, and energy intensity of GDP for other activities were mainly responsible for the success in reducing China’s CO2 emission intensity and that activities related to the electric power industry played a key role. It is also revealed that performance varied significantly at the individual province level. The provinces with higher emission levels contributed the most to China’s improvements in CO2 emission intensity.  相似文献   

4.
In this study we use Divisia index approach to identify key factors affecting CO2 emission changes of industrial sectors in Taiwan. The changes of CO2 emission are decomposed into emission coefficient, energy intensity, industrial structure and economic growth. Furthermore, comparisons with USA, Japan, Germany, the Netherlands and South Korea are made to have a better understanding of emission tendency in these countries and to help formulate our CO2 reduction strategies for responding to the international calls for CO2 cuts. The results show that economic growth and high energy intensity were two key factors for the rapid increase of industrial CO2 emission in Taiwan, while adjustment of industrial structure was the main component for the decrease. Although economic development is important, Taiwan must keep pace with the international trends for CO2 reduction. Among the most important strategies are continuous efforts to improve energy intensity, fuel mix toward lower carbon, setting targets for industrial CO2 cuts, and advancing green technology through technology transfer. Also, the clean development mechanism (CDM) is expected to play an important role in the future.  相似文献   

5.
As the country with the second largest emitter of energy-related CO2 gas, China experienced a dramatic decline in CO2 emission intensity from 1991 to 2000, but since then the rate of decline slowed and CO2 emission intensity actually increased in 2003. In this paper, the complete decomposition method developed by Sun is used to analyze the nature of the factors that influence the changes in energy-related CO2 emission and CO2 emission intensity during the period 1991–2006. We find that: (1) energy intensity effect is confirmed as the dominant contributor to the decline in CO2 emission and CO2 emission intensity, (2) economic activity effect is the most important contributor to increased CO2 emission, and (3) economic structure and CO2 emission coefficient effects are found to contribute little to the changes in CO2 emission and CO2 emission intensity, which actually increased CO2 emission and CO2 emission intensity over the period 1991–2006 except for several years.  相似文献   

6.
Evaluating carbon dioxide emissions in international trade of China   总被引:3,自引:0,他引:3  
China is the world's largest emitter of carbon dioxide (CO2). As exports account for about one-third of China's GDP, the CO2 emissions are related to not only China's own consumption but also external demand. Using the input–output analysis (IOA), we analyze the embodied CO2 emissions of China's import and export. Our results show that about 3357 million tons CO2 emissions were embodied in the exports and the emissions avoided by imports (EAI) were 2333 million tons in 2005. The average contribution to embodied emission factors by electricity generation was over 35%. And that by cement production was about 20%. It implies that the production-based emissions of China are more than the consumption-based emissions, which is evidence that carbon leakage occurs under the current climate policies and international trade rules. In addition to the call for a new global framework to allocate emission responsibilities, China should make great efforts to improve its energy efficiency, carry out electricity pricing reforms and increase renewable energy. In particular, to use advanced technology in cement production will be helpful to China's CO2 abatement.  相似文献   

7.
This study analyze the potential factors influencing the growth of transport sector carbon dioxide (CO2) emissions in selected Asian countries during the 1980–2005 period by decomposing annual emissions growth into components representing changes in fuel mix, modal shift, per capita gross domestic product (GDP) and population, as well as changes in emission coefficients and transportation energy intensity. We find that changes in per capita GDP, population growth and transportation energy intensity are the main factors driving transport sector CO2 emission growth in the countries considered. While growth in per capita income and population are responsible for the increasing trend of transport sector CO2 emissions in China, India, Indonesia, Republic of Korea, Malaysia, Pakistan, Sri Lanka and Thailand; the decline of transportation energy intensity is driving CO2 emissions down in Mongolia. Per capita GDP, population and transportation energy intensity effects are all found responsible for transport sector CO2 emissions growth in Bangladesh, the Philippines and Vietnam. The study also reviews existing government policies to limit CO2 emissions growth, such as fiscal instruments, fuel economy standards and policies to encourage switching to less emission intensive fuels and transportation modes.  相似文献   

8.
In late 2009, the Chinese government committed to cut its carbon dioxide emissions per unit of gross domestic product (GDP) by 40% to 45% of 2005 levels by 2020. This has raised the issue of how to allocate the CO2 reduction target regionally to meet the national reduction target. To meet this objective, the following aspects may be taken into consideration: equity principles, ‘common but differentiated responsibilities’; intensity reduction target fulfillment; and economic difference and reduction potential among provinces. This paper selects per capita GDP, accumulated fossil fuel related CO2 emissions and energy consumption per unit of industrial added value as indicators for emission reduction capacity, responsibility and potential, respectively. Based on these three indicators, a comprehensive index is developed and an intensity allocation model constructed. As decision makers may have different preferences when allocating the reduction burden, we allocate different weights to the indicators, analyzing the results using cluster analysis. The following aspects may also be considered together with the national regional development strategy to determine how to share the burden: the reduction potential of various regions; implementation potential of the plans; and promotion of a highly efficient low carbon economic development model.  相似文献   

9.
Based on time series decomposition of the Log-Mean Divisia Index (LMDI), this paper analyzes the change of industrial carbon emissions from 36 industrial sectors in China over the period 1998–2005. The changes of industrial CO2 emission are decomposed into carbon emissions coefficients of heat and electricity, energy intensity, industrial structural shift, industrial activity and final fuel shift. Our results clearly show that raw chemical materials and chemical products, nonmetal mineral products and smelting and pressing of ferrous metals account for 59.31% of total increased industrial CO2 emissions. The overwhelming contributors to the change of China's industrial sectors’ carbon emissions in the period 1998–2005 were the industrial activity and energy intensity; the impact of emission coefficients of heat and electricity, fuel shift and structural shift was relatively small. Over the year 1998–2002, the energy intensity change in some energy-intensive sectors decreased industrial emissions, but increased emissions over the period 2002–2005. The impact of structural shift on emissions have varied considerably over the years without showing any clear trend, and the final fuel shift increased industrial emissions because of the increase of electricity share and higher emissions coefficient. Therefore, raw chemical materials and chemical products, nonmetal mineral products and smelting and pressing of ferrous metals should be among the top priorities for enhancing energy efficiency and driving their energy intensity close to the international advanced level. To some degree, we should reduce the products waste of these sectors, mitigate the growth of demand for their products through avoiding the excessive investment highly related to these sectors, increasing imports or decreasing the export in order to avoid expanding their share in total industrial value added. However, all these should integrate economic growth to harmonize industrial development and CO2 emission reduction.  相似文献   

10.
Significant pressure from increasing CO2 emissions and energy consumption in China’s industrialization process has highlighted a need to understand and mitigate the sources of these emissions. Ammonia production, as one of the most important fundamental industries in China, represents those heavy industries that contribute largely to this sharp increasing trend. In the country with the largest population in the world, ammonia output has undergone fast growth spurred by increasing demand for fertilizer of food production since 1950s. However, various types of technologies implemented in the industry make ammonia plants in China operate with huge differences in both energy consumption and CO2 emissions. With consideration of these unique features, this paper attempts to estimate the amount of CO2 emission from China’s ammonia production, and analyze the potential for carbon mitigation in the industry. Based on the estimation, related policy implications and measures required to realize the potential for mitigation are also discussed.  相似文献   

11.
In this paper, different electricity demand scenarios for Spain are presented. Population, income per capita, energy intensity and the contribution of electricity to the total energy demand have been taken into account in the calculations. Technological role of different generation technologies, i.e. coal, nuclear, renewable, combined cycle (CC), combined heat and power (CHP) and carbon capture and storage (CCS), are examined in the form of scenarios up to 2050. Nine future scenarios corresponding to three electrical demands and three options for new capacity: minimum cost of electricity, minimum CO2 emissions and a criterion with a compromise between CO2 and cost (CO2-cost criterion) have been proposed. Calculations show reduction in CO2 emissions from 2020 to 2030, reaching a maximum CO2 emission reduction of 90% in 2050 in an efficiency scenario with CCS and renewables. The contribution of CCS from 2030 is important with percentage values of electricity production around 22–28% in 2050. The cost of electricity (COE) increases up to 25% in 2030, and then this value remains approximately constant or decreases slightly.  相似文献   

12.
Buildings have direct and indirect impacts on the CO2 emissions. This paper presents a study on the impact of wall systems and cladding materials on the CO2 emissions and aims to analyse the performance of those systems in order to provide designers with reliable technical data. The studied systems include stucco, masonry veneer, aluminium siding, vinyl siding and the exterior insulation and finish systems (EIFS). To evaluate the economic performance, environmental performance and embodied energy, green building modelling system was used, while to estimate the impact of operational energy, a simulation model was first used and then simple bottom-up model constructed. A sensitivity analysis was conducted in order to determine the relative influence of each system on a representative educational building. It was found that some cladding materials reduce the direct CO2 emissions, but provide a moderate reduction in terms of operational energy, and vice versa. Others positively impact the embodied energy and environmental performance and can optimise the operational energy performance. Therefore, a careful evaluation should be carried out in selecting wall cladding systems and finishing materials in order to reduce the CO2 emissions effectively.  相似文献   

13.
The Logarithmic Mean Divisia Index (LMDI) method of complete decomposition is used to examine the role of three factors (electricity production, electricity generation structure and energy intensity of electricity generation) affecting the evolution of CO2 emissions from electricity generation in seven countries. These seven countries together generated 58% of global electricity and they are responsible for more than two-thirds of global CO2 emissions from electricity generation in 2005. The analysis shows production effect as the major factor responsible for rise in CO2 emissions during the period 1990–2005. The generation structure effect also contributed in CO2 emissions increase, although at a slower rate. In contrary, the energy intensity effect is responsible for modest reduction in CO2 emissions during this period. Over the 2005–2030 period, production effect remains the key factor responsible for increase in emissions and energy intensity effect is responsible for decrease in emissions. Unlike in the past, generation structure effect contributes significant decrease in emissions. However, the degree of influence of these factors affecting changes in CO2 emissions vary from country to country. The analysis also shows that there is a potential of efficiency improvement of fossil-fuel-fired power plants and its associated co-benefits among these countries.  相似文献   

14.
This paper attempts to discuss the CO2 emissions embodied in Sino-US international trade using a sector approach. Based on an input–output model established in this study, we quantify the impact of Sino-US international trade on national and global CO2 emissions. Our initial findings reveal that: In 2005, the US reduced 190.13 Mt CO2 emissions through the consumption of imported goods from China, while increasing global CO2 emissions by about 515.25 Mt. Similarly, China reduced 178.62 Mt CO2 emissions through the consumption of US goods, while reducing global CO2 emissions by 129.93 Mt. Sino-US international trade increased global CO2 emissions by 385.32 Mt as a whole, of which the Chemical, Fabricated Metal Products, Non-metallic Mineral Products and Transportation Equipment sectors contributed an 86.71% share. Therefore, we suggest that accelerating the adjustment of China’s trade structure and export of US advanced technologies and experience related to clean production and energy efficiency to China as the way to reduce the negative impact of Sino-US trade on national and global CO2 emissions. This behavior should take into account the processing and manufacturing industries as a priority, especially the Chemical, Fabricated Metal Products, Non-metallic Mineral Products and Transportation Equipment sectors.  相似文献   

15.
The interplays among economy and energy and environment have been widely concerned. This paper put forward several indicators to quantify the relationships among economic growth and energy consumption and CO2 emission. As an example, these indicators were applied to evaluate the comprehensive performances of China during 1990-2007. The results show that Chinese people has been living a better life with Chinese rapid economic growth but not synchronously in urban and rural areas. Non-carbon energy resources share has increased; however, fossil energy resources have still acted as the main driver for Chinese economic growth during this period. Technical progress has improved the fossil energy efficiency of Chinese economic activity, which leads to CO2 emission per unit GDP and CO2 emission per capita unit GDP dropping simultaneously; however, the two indicators’ annual decline rates become smaller and smaller, which reflects that technical progress’ role is dropping and economic scale's effect is climbing. People's survival has a rising contribution to CO2 emission. CO2 emission per capita has increased, which shows that economic scale has greater impact on CO2 emission than technical progress does. Relatively speaking, Chinese development patterns have become more and more sustainable during this period. Finally, based on the related issues being discussed, some corresponding suggestions are put forward for Chinese government to further coordinate the relationship among economic development and energy consumption and CO2 emission. The proposed indicators can form a set of useful tool for policy-makers to promote the harmonious development of economy and energy and environment in different regions and countries.  相似文献   

16.
The status and prospects of the development of Japanese nuclear power are controversial and uncertain. Many deem that nuclear power can play key roles in both supplying energy and abating CO2 emissions; however, due to severe nuclear accidents, public acceptance of nuclear power in Japan has not been fully obtained. Moreover, deregulation and liberalization of the electricity market impose pressure on large Japanese electric power companies with regard to both the operation of nuclear power plants and the development of the nuclear fuel cycle. Long-term Japanese CO2 reduction strategies up to 2100 are of environmental concern and are socially demanded under the circumstances described above. Taking these factors into account, we set the following two objectives for this study. One is to estimate lifecycle CO2 (LCCO2) emissions from Japanese nuclear power, and the other is to evaluate CO2 emissions from the Japanese electric power sector in the 21st century by quantifying the relationship between LCCO2 emissions and scenarios for the adoption of nuclear power. In the pursuit of the above objectives, we first create four scenarios of Japanese adoption of nuclear power, that range from nuclear power promotion to phase-out. Next, we formulate four scenarios describing the mix of the total electricity supply in Japan till the year 2100 corresponding to each of these nuclear power scenarios. CO2 emissions from the electric power sector in Japan till the year 2100 are estimated by summing those generated by each respective electric power technology and LCCO2 emission intensity. The LCCO2 emission intensity of nuclear power for both light water reactors (LWR) and fast breeder reactors (FBR) includes the uranium fuel production chain, facility construction/operation/decommission, and spent fuel processing/disposal. From our investigations, we conclude that the promotion of nuclear power is clearly a strong option for reducing CO2 emissions by the electric power sector. The introduction of FBR has the effect of further reducing CO2 emissions in the nuclear power sector. Meeting energy demand and reducing CO2 emissions while phasing out nuclear power appears challenging given its importance in the Japanese energy supply.  相似文献   

17.
Using STAR models, we investigate the nonlinear dynamic properties and the interdependence of CO2 emissions and economic growth for Korea. The estimation results indicate that the growth rate of both CO2 emissions and industrial production exhibit a significant nonlinear asymmetric dynamics. While the linear Granger causality test finds no causality in any direction, the results of the nonlinear Granger causality tests show a two-way causality between CO2 emissions and economic growth. The strong mutual causation between CO2 emissions and economic activities indicates that the economic impact from CO2 mitigation is expected to be higher in Korea. This suggests that the appropriate energy and environmental policy be to mitigate CO2 emissions while having less impact on the economy.  相似文献   

18.
This study analyzes the key factors behind the CO2 emissions from the power sector in fifteen selected countries in Asia and the Pacific using the Log-Mean Divisia Index method of decomposition. The roles of changes in economic output, electricity intensity of the economy, fuel intensity of power generation and generation structure are examined in the evolution of CO2 emission from the power sector of the selected countries during 1980–2004. The study shows that the economic growth was the dominant factor behind the increase in CO2 emission in ten of the selected countries (i.e., Australia, China, India, Japan, Malaysia, Pakistan, South Korea, Singapore, Thailand and Vietnam, while the increasing electricity intensity of the economy was the main factor in three countries (Bangladesh, Indonesia and Philippines). Structural changes in power generation were found to be the main contributor to changes in the CO2 emission in the case of Sri Lanka and New Zealand.  相似文献   

19.
To achieve the stabilization of greenhouse gas (GHG) concentrations in the atmosphere, the international community will need to intensify its long-term efforts. Many EU countries have released national long-term scenarios toward 2050, and their ambitious targets for CO2 emission reduction are aiming at a decrease of more than 50% of today's emission. In April 2004, Japan began a research project on its long-term climate policy. This paper discusses the long-term scenarios in other countries and the medium-term scenarios in Japan to support the development of a Japan's long-term climate stabilization scenario. In this study, CO2 emission is decomposed with an extended Kaya identity (indexes: CO2 capture and storage, carbon intensity, energy efficiency, energy intensity, economic activity) and a Reduction Balance Table is developed.  相似文献   

20.
In order to reduce energy-related CO2 emissions different options have been considered: energy efficiency improvements, structural changes to low carbon or zero carbon fuel/technologies, carbon sequestration, and reduction in energy-service demands (useful energy). While efficiency and technology options have been extensively studied within the context of climate change mitigation, this paper addresses the possible role of price-related energy-service demand reduction. For this analysis, the elastic demand version of the TIAM–UCL global energy system model is used in combination with decomposition analysis. The results of the CO2 emission decomposition indicate that a reduction in energy-service demand can play a limited role, contributing around 5% to global emission reduction in the 21st century. A look at the sectoral level reveals that the demand reduction can play a greater role in selected sectors like transport contributing around 16% at a global level. The societal welfare loss is found to be high when the price elasticity of demand is low.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号