首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
交通运输用油是影响我国石油消费量的重要因素.汽车的节油与燃料替代对降低石油需求起着关键性的作用.也是实现经济、社会和能源安全以及过渡到低碳经济的关键。汽车节油效果取决于国家的宏观政策。提高传统汽车能源效率、鼓励替代燃料和新能源汽车开发,以及采用智能运输系统、大力发展公共交通是节油减排的有效途径。提高汽车燃料使用效率.即开发节油型汽车、降低燃料消耗、淘汰油耗较高的老旧车型、提高柴油发动机所占比例等。整合强制性燃油经济性标识、标准和财政激励措施等独立的政策形成一揽子计划.通过相互协同作用来增强效果。替代燃料和新能源是石油燃料的有效补充,应加大投入力度。其中最有前景的是天然气、液化石油气等气体燃料。混合动力、纯电动汽车可借鉴国外先进技术,实现跨越式发展。氢燃料电池汽车应加大研发力度。充分利用智能运输系统和先进的物联网系统优化交通结构和货运行程,大力发展公共交通。  相似文献   

2.
The United States has adopted fuel economy standards that require increases in the on-road efficiency of new passenger vehicles, with the goal of reducing petroleum use and (more recently) greenhouse gas (GHG) emissions. Understanding the cost and effectiveness of fuel economy standards, alone and in combination with economy-wide policies that constrain GHG emissions, is essential to inform coordinated design of future climate and energy policy. We use a computable general equilibrium model, the MIT Emissions Prediction and Policy Analysis (EPPA) model, to investigate the effect of combining a fuel economy standard with an economy-wide GHG emissions constraint in the United States. First, a fuel economy standard is shown to be at least six to fourteen times less cost effective than a price instrument (fuel tax) when targeting an identical reduction in cumulative gasoline use. Second, when combined with a cap-and-trade (CAT) policy, a binding fuel economy standard increases the cost of meeting the GHG emissions constraint by forcing expensive reductions in passenger vehicle gasoline use, displacing more cost-effective abatement opportunities. Third, the impact of adding a fuel economy standard to the CAT policy depends on the availability and cost of abatement opportunities in transport—if advanced biofuels provide a cost-competitive, low carbon alternative to gasoline, the fuel economy standard does not bind and the use of low carbon fuels in passenger vehicles makes a significantly larger contribution to GHG emissions abatement relative to the case when biofuels are not available. This analysis underscores the potentially large costs of a fuel economy standard relative to alternative policies aimed at reducing petroleum use and GHG emissions. It further emphasizes the need to consider sensitivity to vehicle technology and alternative fuel availability and costs as well as economy-wide responses when forecasting the energy, environmental, and economic outcomes of policy combinations.  相似文献   

3.
We develop a model of the rebound effect which explicitly accounts for both the demand and supply sides of the energy sources. We consider a transportation sector originally using a “dirty” (fossil) fuel and examine the relative effectiveness of alternative policies: efficiency improvements in the dirty fuel technology sector (e.g., CAFE standards) and technology shifts by partial adoption of a new clean technology (e.g., low-carbon fuel standards). The model generates endogenous equilibrium quantities and prices for the dirty and clean fuels. We characterize the magnitude of the rebound effect as a function of demand and supply elasticities and use the equilibrium values to compare policy options. When the supply of the dirty fuel is inelastic, we find that introducing a new technology with non-zero emissions may actually increase the total level of emissions, similar to the leakage effect. A technology shift policy can perform better than an efficiency improvement policy in the dirty fuel sector only when the dirty fuel supply is sufficiently elastic, the emission intensity of the new technology very low, and the technology shift is greater than a threshold value. Using data for gasoline (as a proxy for the dirty technology) and several other cleaner technologies, we show that these conditions are satisfied by a hypothetical zero-emission technology, but not by electric vehicles using the average US generation mix or the current US corn based E85. Our results demonstrate the importance of accounting for the supply side in estimating the magnitude of the rebound effect and its impact on fuel consumption in a large-scale policy implementation.  相似文献   

4.
Performance-based low carbon fuel standards (LCFS) of the type implemented in California and being adopted in the European Union, are a promising policy approach for decarbonizing transport fuels and reducing fossil fuel use. This paper examines the efficacy of LCFS policies, along with four major challenges that threaten their effectiveness. These challenges include leakage and shuffling of greenhouse gas (GHG) emissions, impacts on energy security, increased GHG emissions due to global land use conversion (indirect land use changes), and sustainability issues associated with biofuel production. We identify complementary policies that mitigate the severity of these challenges, while noting that some of these challenges are inherent to carbon and alternative fuel policies.  相似文献   

5.
China is experiencing intensified industrialisation and motorisation. In the world׳s largest emerging economy, energy efficiency is expected to play a critical role in the ever-rising demand for energy. Based on factual overviews and numerical analysis, this article carries out an in-depth investigation into the effectiveness of policies announced or implemented in recent decades targeted at energy conservation in the energy intensive manufacturing and transportation sectors. It highlights nine energy intensive sectors that achieved major improvements in their energy technology efficiency efforts. Under the umbrella of the 11th Five-Year Plan, these sectors׳ performances reflect the effectiveness of China׳s energy conservation governance. Numerous actions have been taken in China to reduce the road transport sector׳s demand for energy and its GHG emissions by implementing fuel economy standards, promoting advanced energy efficient vehicles, and alternative fuels.Coal-based energy saving technologies, especially industrial furnace technologies, are critical for China׳s near and medium-term energy saving. In the long run, renewable energy development and expanding the railway transport system are the most effective ways to reduce energy use and GHG emissions in China. Fuel economy standards could reduce oil consumption and GHGs by 34–35 per cent.  相似文献   

6.
This study analyze the potential factors influencing the growth of transport sector carbon dioxide (CO2) emissions in selected Asian countries during the 1980–2005 period by decomposing annual emissions growth into components representing changes in fuel mix, modal shift, per capita gross domestic product (GDP) and population, as well as changes in emission coefficients and transportation energy intensity. We find that changes in per capita GDP, population growth and transportation energy intensity are the main factors driving transport sector CO2 emission growth in the countries considered. While growth in per capita income and population are responsible for the increasing trend of transport sector CO2 emissions in China, India, Indonesia, Republic of Korea, Malaysia, Pakistan, Sri Lanka and Thailand; the decline of transportation energy intensity is driving CO2 emissions down in Mongolia. Per capita GDP, population and transportation energy intensity effects are all found responsible for transport sector CO2 emissions growth in Bangladesh, the Philippines and Vietnam. The study also reviews existing government policies to limit CO2 emissions growth, such as fiscal instruments, fuel economy standards and policies to encourage switching to less emission intensive fuels and transportation modes.  相似文献   

7.
A low carbon fuel standard (LCFS) is a market-based policy that specifies declining standards for the average lifecycle fuel carbon intensity (AFCI) of transportation fuels sold in a region. This paper: (i) compares transportation fuel carbon policies in terms of their economic efficiency, fuel price impacts, greenhouse gas emission reductions, and incentives for innovation; (ii) discusses key regulatory design features of LCFS policies; and (iii) provides an update on the implementation status of LCFS policies in California, the European Union, British Columbia, and Oregon. The economics literature finds that an intensity standard implicitly taxes emissions and subsidizes output. The output subsidy results in an intensity standard being inferior to a carbon tax in a first-best world, although the inefficiency can be corrected with a properly designed consumption tax (or mitigated by a properly designed carbon tax or cap-and-trade program). In California, from 2011 to 2015 the share of alternative fuels in the regulated transportation fuels pool increased by 30%, and the reported AFCI of all alternative fuels declined 21%. LCFS credit prices have varied considerably, rising to above $100/credit in the first half of 2016. LCFS programs in other jurisdictions share many features with California's, but have distinct provisions as well.  相似文献   

8.
Road transport is responsible for a large and growing share of CO2 emissions in most countries. A number of new fuel‐efficient vehicle technologies and renewable transport fuels are possible alternatives to conventional options but their deployment relies strongly on different policy measures. Even though a future higher use of transport biofuels and electric vehicles is likely to increase the interaction between the transportation sector and the stationary energy system (heat, power, etc.), these systems are often analysed separately. In this study, a transport module is developed and integrated into the MARKAL_Nordic energy system model. The transport module describes a range of vehicle technologies and fuel options as well as different paths for conversion of primary energy resources into transport fuels. The integrated model is utilized to analyse the impact of transport fuel tax designs on future cost‐effective fuel and technology choices in the Swedish transportation sector, as well as the consequences of these choices on system costs and CO2 emissions. The model, which is driven by cost‐minimization, is run to 2050 with various assumptions regarding transport fuel tax levels and tax schemes. The results stress the importance of fuel taxes to accelerate the introduction of fuel‐efficient vehicle technologies such as hybrids and plug‐in hybrids. Tax exemptions can make biofuels an economically favourable choice for vehicle users. However, due to limitations in biomass supply, a too strong policy‐focus on transport biofuels can lead to high system costs in relation to the CO2 abatement achieved. The modelling performed indicates that the effects caused by linkages between the transportation sector and the stationary energy system can be significant and integrated approaches are thus highly relevant. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

9.
As the population and economy continue to grow globally, demand for energy will continue to grow. The transportation sector relies solely on petroleum for its energy supply. The United States and China are the top two oil-importing countries. A major issue both countries face and are addressing is energy insecurity as a result of the demand for liquid fuels. Improvements in the energy efficiency of vehicles and the substitution of petroleum fuels with alternative fuels can help contain growth in the demand for transportation oil. Although most alternative transportation fuels — when applied to advanced vehicle technologies — can substantially reduce greenhouse emissions, coal-based liquid fuels may increase greenhouse gas emissions by twice as much as gasoline. Such technologies as carbon capture and storage may need to be employed to manage the greenhouse gas emissions of coal-based fuels. At present, there is no ideal transportation fuel option to solve problems related to transportation energy and greenhouse gas emissions. To solve these problems, research and development efforts are needed for a variety of transportation fuel options and advanced vehicle technologies.  相似文献   

10.
Explanations for, and indirect evidence of, imperfections in the market for private passenger vehicle fuel economy suggest there is a reasonable case for combining fuel economy standards and fuel or carbon taxes to contribute to an energy policy that aims to reduce greenhouse gas emissions and improve energy security. Estimates of key elasticities, including the rebound effect, indicate that the positive and negative side-effects of fuel economy measures on transport activities and external costs are limited. However, an energy policy for transport does not replace a transport policy that aims to manage the main transport externalities including congestion and local pollution. Conventional marginal cost estimates and standard cost-benefit reasoning suggest that policies that address congestion and local pollution likely bring benefits at least as large as those from fuel economy measures. But the large uncertainty on the possible effects of greenhouse gas emissions constitutes a strong challenge for standard cost-benefit reasoning. Emerging results from methods to cope with this uncertainty suggest that policies to stimulate the widespread adoption of low-carbon technologies in transport are justified.  相似文献   

11.
This paper develops a system dynamics model of Iceland׳s energy sector (UniSyD_IS) that is based on the UniSyD_NZ model of New Zealand׳s energy economy. The model focuses on the energy supply sector with endogenous representation of road transport energy demand. Equilibrium interactions are performed across electricity, hydrogen, biofuels, and road transport sectors. Possible transition paths toward a low-carbon transport in Iceland are explored with implications for fuel demand, greenhouse gas (GHG) emissions and associated costs. The consumer sector simulates the long-term evolution of light and heavy-duty vehicles through a vehicle choice algorithm that accounts for social influences and consumer preferences. Through different scenarios, the influences of four fundamental driving factors are examined. The factors are oil price, carbon tax, fuel supply-push, and government incentives. The results show that changes in travel demand, vehicle technologies, fuel types, and efficiency improvements can support feasible transition paths to achieve sufficient reduction in GHG for both 4 °C and 2 °C climate scenarios of the Nordic Energy Technology Perspectives study. Initial investment in supply infrastructure for alternative fuels will not only mitigate GHG emissions, but also could provide long-term economic benefits through fuel cost saving for consumers and reduced fuel import costs for government.  相似文献   

12.
California has taken steps to reduce greenhouse gas emissions from the transportation sector. One example is the recent adoption of the Low Carbon Fuel Standard, which aims to reduce the carbon intensity of transportation fuels. To effectively implement this and similar policies, it is necessary to understand well-to-wheels emissions associated with distinct vehicle and fuel platforms, including those using electricity. This analysis uses an hourly electricity dispatch model to simulate and investigate operation of the current California grid and its response to added vehicle and fuel-related electricity demands in the near term. The model identifies the “marginal electricity mix” - the mix of power plants that is used to supply the incremental electricity demand from vehicles and fuels - and calculates greenhouse gas emissions from those plants. It also quantifies the contribution from electricity to well-to-wheels greenhouse gas emissions from battery-electric, plug-in hybrid, and fuel cell vehicles and explores sensitivities of electricity supply and emissions to hydro-power availability, timing of electricity demand (including vehicle recharging), and demand location within the state. The results suggest that the near-term marginal electricity mix for vehicles and fuels in California will come from natural gas-fired power plants, including a significant fraction (likely as much as 40%) from relatively inefficient steam- and combustion-turbine plants. The marginal electricity emissions rate will be higher than the average rate from all generation - likely to exceed 600 gCO2 equiv. kWh−1 during most hours of the day and months of the year - and will likely be more than 60% higher than the value estimated in the Low Carbon Fuel Standard. But despite the relatively high fuel carbon intensity of marginal electricity in California, alternative vehicle and fuel platforms still reduce emissions compared to conventional gasoline vehicles and hybrids, through improved vehicle efficiency.  相似文献   

13.
在我国中长期的终端能源需求中石油将占约15%的份额,其中55%~60%将被用于交通运输行业。逐步减少交通运输领域石油能源产品的使用量,对减少能源消费总量和二氧化碳排放量十分重要。目前国内外研究机构预测的中国2050年货运周转总量(8×104~9×104Gt.km)及公路货运周转量均明显偏高,造成预测的运输燃料消耗量太高,这也反映出调整中国经济产业结构和进出口贸易结构的紧迫性。减少私人乘用车的拥有量和出行量也是节能减排的关键,采用西方发达国家私人乘用车的比例,预测中国2050年将拥有5×108~6×108辆乘用车不符合中国人口众多、城市中心区人口密度的特点,将乘用车数量控制在3.0×108辆的水平比较恰当。目前全球运输领域二氧化碳排放量约占总排放量的20%~25%,中国运输领域的二氧化碳排放量将逐步上升,占总排放量的份额将从目前的7%提高到2050年的30%以上。应努力采取各种措施,使2050年乘用车的二氧化碳排放强度降低到40g/km的水平。除了减少化石能源石油产品使用量、使用生物质燃料、推广纯电动汽车和开发燃料电池汽车外,改变出行方式、发展方便快捷的公共交通显得十分重要。预计我国2050年燃料电池汽车将占到小汽车保有量的20%左右,纯电动汽车占30%左右,各种混合动力汽车将占50%左右。为了使中国2050年二氧化碳排放总量控制在40×108~50×108t的水平,有可能也有必要将石油的使用量控制在6.0×108t,交通运输领域石油能源产品使用量控制在4.0×108t以下。  相似文献   

14.
Transformational energy and climate policies are being debated worldwide that could have significant impact upon the future of the forest products industry. Because woody biomass can produce alternative transportation fuels, low-carbon electricity, and numerous other “green” products in addition to traditional paper and lumber commodities, the future use of forest resources is highly uncertain. Using the National Energy Modeling System (NEMS), this paper assesses the future of the forest products industry under three possible U.S. policy scenarios: (1) a national renewable electricity standard, (2) a national policy of carbon constraints, and (3) incentives for industrial energy efficiency. In addition, we discuss how these policy scenarios might interface with the recently strengthened U.S. renewable fuels standards. The principal focus is on how forest products including residues might be utilized under different policy scenarios, and what such market shifts might mean for electricity and biomass prices, as well as energy consumption and carbon emissions. The results underscore the value of incentivizing energy efficiency in a portfolio of energy and climate policies in order to moderate electricity and biomass price escalation while strengthening energy security and reducing CO2 emissions.  相似文献   

15.
A common strategy for reducing greenhouse gas (GHG) emissions from energy use is to increase the supply of low-carbon alternatives. However, increasing supply tends to lower energy prices, which encourages additional fuel consumption. This “fuel market rebound effect” can undermine climate change mitigation strategies, even to the point where efforts to reduce GHG emissions by increasing the supply of low-carbon fuels may actually result in increased GHG emissions. Here, we explore how policies that encourage the production of low-carbon fuels may result in increased GHG emissions because the resulting increase in energy use overwhelms the benefits of reduced carbon intensity. We describe how climate change mitigation strategies should follow a simple rule: a low-carbon fuel with a carbon intensity of X% that of a fossil fuel must displace at least X% of that fossil fuel to reduce overall GHG emissions. We apply this rule to the United States Renewable Fuel Standard (RFS2). We show that absent consideration of the fuel market rebound effect, RFS2 appears to reduce GHG emissions, but once the fuel market rebound effect is factored in, RFS2 actually increases GHG emissions when all fuel GHG intensity targets are met.  相似文献   

16.
Both fuel cell and electric vehicles have the potential to play a major role in a transformation towards a low carbon transport system that meets travel demands in a cleaner and more efficient way if hydrogen and electricity was produced in a sustainable manner. Cost reductions are central to this challenge, since these technologies are currently too expensive to compete with conventional vehicles based on fossil fuels. One important mechanism through which technology costs fall is learning-by-doing, the process by which cumulative global deployment leads to cost reduction. This paper develops long-term scenarios by implementing global technology learning endogenously in the TIAM-UCL global energy system model to analyse the role of hydrogen and electricity to decarbonise the transport sector. The analysis uses a multi-cluster global technology learning approach where key components (fuel cell, electric battery and electric drive train), to which learning is applied, are shared across different vehicle technologies such as hybrid, plug-in hybrid, fuel cell and battery operated vehicles in cars, light goods vehicles and buses. The analysis shows that hydrogen and electricity can play a critical role to decarbonise the transport sector. They emerge as complementary transport fuels, rather than as strict competitors, in the short and medium term, with both deployed as fuels in all scenarios. However, in the very long-term when the transport sector has been almost completely decarbonised, technology competition between hydrogen and electricity does arise, in the sense that scenarios using more hydrogen in the transport sector use less electricity and vice versa.  相似文献   

17.
Sustainable supply of energy at affordable prices is vital to ensure the human development. ASEAN is committed pursuing for a clean and green region with fully established mechanisms for sustainable development to ensure the protection of regional environment, resources and the high quality of people's life. Nowadays, energy use in the transportation sector represents an important issue in ASEAN countries. Therefore, it is believed that the introduction of fuel economy standards and labels is the key to save energy in this sector. Fuel economy standards and labels are relatively cheap measure to influence consumer behaviour and to induce car manufacturers to produce more efficient vehicles. Fuel economy standards and labels for vehicle are being implemented in many countries around the world to save fuel consumption and mitigate CO2 emission. This paper is a review on fuel economy standard and labels for vehicle in some selected ASEAN countries such as Singapore, Indonesia, Malaysia, Philippines, Thailand and Vietnam. It has been found that Singapore is the leading country in ASEAN that has implemented fuel economy standards and labels. Moreover, it has been found that the implementation of cleaner fuels standard play a crucial role in protecting public health and the environment from transportation sector emissions. The most common alternative fuels used in ASEAN are biodiesel, ethanol, methanol, propane, hydrogen and natural gas.  相似文献   

18.
Light-duty vehicles (LDV) are responsible for a large fraction of petroleum use and are a significant source of greenhouse gas (GHG) emissions in the United States. Improving conventional gasoline-powered vehicle efficiency can reduce petroleum demand, however efficiency alone cannot reach deep GHG reduction targets, such as 80% below the 1990 LDV GHG emissions level. Because the cost and availability of low-GHG fuels will impose limits on their use, significant reductions in GHG emissions will require combinations of fuel and vehicle technologies that both increase efficiency and reduce the emissions from fuel production and use. This paper examines bounding cases for the adoption of individual technologies and then explores combinations of advanced vehicle and fuel technologies. Limits on domestic biofuel production—even combined with significant conventional combustion engine vehicle improvements—mean that hydrogen fuel cell electric or battery electric vehicles fueled by low-GHG sources will be necessary. Complete electrification of the LDV fleet is not required to achieve significant GHG reduction, as replacing 40% of the LDV fleet with zero-emission hydrogen vehicles while achieving optimistic biofuel production and conventional vehicle improvements can allow attainment of a low GHG emission target. Our results show that the long time scale for vehicle turnover will ensure significant emissions from the LDV sector, even when lower emission vehicles and fuels are widely available within 15 years. Reducing petroleum consumption is comparatively less difficult, and significant savings can be achieved using efficient conventional gasoline-powered vehicles.  相似文献   

19.
This study analyzes the impact of the introduction of hydrogen as fuel in the road transportation sector of Korea. Since this sector is completely dependent on petroleum and alternative technologies such as fuel cell vehicles, hydrogen is one alternative fuel that could meet the challenges that Korea is facing due to rising oil prices. This study uses a scenarios-based energy economic model including the hydrogen path way as a sub-energy system to explore the energy system of Korea through 2044. This study also constructs six scenarios consisting of three government policies concerning carbon dioxide reduction and two oil price scenarios in order to assess the impact on hydrogen as fuel in the road transportation sector. The results of this study show that in a particular case (high Btu tax and oil prices) the share of hydrogen would reach 76% of the road transportation sector, and hydrogen would be produced mainly from renewable and nuclear resources via electrolysis facilities. It is also revealed that hydrogen is effective at reducing carbon dioxide, improving energy efficiency and contributing to the energy security of Korea.  相似文献   

20.
The core issues of the Austrian energy policy agenda include reducing greenhouse gas (GHG) emissions and dependence on fossil fuels. Within this study, the costs of GHG mitigation and fossil fuel replacement (abatement costs) of established and upcoming bioenergy technologies for heat, electricity and transport fuel production are assessed. Sensitivity analyses and projections up to 2030 illustrate the effect of dynamic parameters on specific abatement costs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号