首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The health and climate impacts of available household cooking options in developing countries vary sharply. Here, we analyze and compare these impacts (health; climate) and the potential co-benefits from the use of fuel and stove combinations. Our results indicate that health and climate impacts span 2 orders of magnitude among the technologies considered. Indoor air pollution is heavily impacted by combustion performance and ventilation; climate impacts are influenced by combustion performance and fuel properties including biomass renewability. Emission components not included in current carbon trading schemes, such as black carbon particles and carbon monoxide, can contribute a large proportion of the total climate impact. Multiple ‘improved’ stove options analyzed in this paper yield roughly equivalent climate benefits but have different impacts on indoor air pollution. Improvements to biomass stoves can improve indoor air quality, which nonetheless remains significantly higher than for stoves that use liquid or gaseous hydrocarbons. LPG- and kerosene-fueled stoves have unrivaled air quality benefits and their climate impacts are also lower than all but the cleanest stoves using renewable biomass.  相似文献   

2.
Because emissions from solid fuel burning in traditional stoves impact global climate change, the regional environment, and household health, there is today real interest in improved cook stoves (ICS). Nonetheless, surprisingly little is known about what households like about these energy products. We report on preferences for biomass-burning ICS attributes in a large sample of 2120 rural households in north India, a global hotspot for biomass fuel use and the damages that such use entails. Households have a strong baseline reliance and preference for traditional stoves, a preference that outweighs the $10 and $5 willingness to pay (WTP) for realistic (33%) reductions in smoke emissions and fuel needs on average, respectively. Preferences for stove attributes are also highly varied, and correlated with a number of household characteristics (e.g. expenditures, gender of household head, patience and risk preferences). These results suggest that households exhibit cautious interest in some aspects of ICS, but that widespread adoption is unlikely because many households appear to prefer traditional stoves over ICS with similar characteristics. The policy community must therefore support a reinvigorated supply chain with complementary infrastructure investments, foster experimentation with products, encourage continued applied research and knowledge generation, and provide appropriate incentives to consumers, if ICS distribution is to be scaled up.  相似文献   

3.
There have been few detailed assessments of the actual impacts of improved stove interventions in rural communities, although many improved stove projects have reported overall efficiencies from tests in simulated kitchens using water-boiling tests (WBTs). This paper presents an integrated energy evaluation of the Patsari cookstove, an efficient wood-burning cookstove developed in Mexico that has recently obtained international recognition, in comparison to traditional cookstoves in rural communities of Michoacan, Mexico. The evaluation uses three standard protocols: the WBT, which quantifies thermal efficiency and firepower; the controlled cooking test (CCT), which measures specific energy consumption associated with local cooking tasks, and the kitchen performance test (KPT), which evaluates the behavior of the stoves in-field conditions and estimates fuel savings. The results showed that the WBT gave little indication of the overall performance of the stove in rural communities. Field testing in rural communities is of critical importance, therefore, in estimating the benefits of improved stoves. In the CCT for tortilla making, the main cooking task in Mexican rural households, Patsari stoves showed fuelwood savings ranging from 44% to 65% in relation to traditional open fires (n=6; P<0.05). These savings were similar in magnitude to the average energy savings from KPT before and after Patsari adoption of 67% (n=23; P<0.05) in rural households exclusively using fuelwood. Similar energy savings of 66% for fuelwood and 64% for LPG, respectively, were also observed in households using mixed fuels. With sound technical design, critical input from local users and proper dissemination strategies, therefore, improved stoves can significantly contribute to improvements in the quality of life of rural people with potential benefits to the surrounding environment.  相似文献   

4.
Many cook stove programs implemented in South Asia and Africa were aimed at reducing fuel wood consumption and pollutants through the use of improved cook stoves. The research work presented in this paper is focused on evaluation of improved cook stoves with respect to thermal efficiency and emission levels. Since the type of biomass fuel varies in different geographical regions, the improved cook stoves must be compatible to use different types of fuel. The present research work is aimed at evaluating three types of forced draft cook stove with two types of biomass fuels. Water boiling tests were conducted to evaluate the stove performance with respect to efficiency and fuel flexibility. The findings of the study are used to evaluate the stove's performance with respect to fuel flexibility, efficiency and user acceptance. The performance results of three types of forced draft stoves tested with fuel wood and coconut shell are presented in this research paper.  相似文献   

5.
A study was conducted, using a multistage simple random sampling design, to determine the structural characteristics of the traditional cooking stoves, amount of wood fuel consumed in the rural floodplain areas in Bangladesh, and also to figure out the socio-economic and environmental consequences of wood fuel usage in the traditional cooking stove. The study showed that family size, income, amount cooked and burning hours significantly affected the amount of wood fuel used per family per year. Taking into account different family sizes, the study observed that 4.24 tonne fuelwood were consumed per family per year. The study showed that 42% of families used only biomass fuel, 5% used liquefied petroleum gas (LPG) and 53% used kerosene along with biomass fuels. The main source of biomass fuel was homestead forests (40%). It has been figured out that the incomplete combustion of biomass in the traditional cooking stove poses severe epidemiological consequences to human health and contributes to global warming. The study also showed that 83% of the respondents would prefer improved cooking stoves over traditional cooking stoves.  相似文献   

6.
The use of biomass cook stoves is widespread in the rural communities of developing countries. It is important to improve the efficiency of these stoves in order to reduce the global warming contribution. An improved biomass fired stove has been developed in our laboratory and a prototype has been built. The combustion chamber is designed to achieve the almost complete combustion of wood thus increasing the efficiency and decreasing indoor air pollution.  相似文献   

7.
In this study, 14 solid-fuel household cook stove and fuel combinations, including 10 stoves and four fuels, were tested for performance and pollutant emissions using a WBT (Water Boiling Test) protocol. Results from the testing showed that some stoves currently used in the field have improved fuel efficiency and lower pollutant emissions compared with traditional cooking methods. Stoves with smaller-mass components exposed to the heat of fuel combustion tended to take lesser time to boil, have better fuel efficiency, and lower pollutant emissions. The challenge is to design stoves with smaller-mass components that also have acceptable durability, affordable cost, and meet user needs. Results from this study provide stove performance and emissions information to practitioners disseminating stove technology in the field. This information may be useful for improving the design of existing stoves and for developing new stove designs. Comparison of results between laboratories shows that results can be replicated between labs when the same stove and fuel are tested using the WBT protocol. Recommendations were provided to improve the ability to replicate results between labs. Implications of better solid-fuel cook stoves are improved human health, reduced fuel use, reduced deforestation, and reduced global climate change.  相似文献   

8.
文章以山东滨州某县的生物质推广村为例,对在该村推广的两款生物质采暖炉具(水暖炉和烤火炉)进行了污染物排放检测,并进行了入户调研。相比于散煤的污染物排放,以生物质成型颗粒为燃料时,水暖炉和烤火炉的PM2.5排放因子分别有52.5%和51.3%的减排效果;水暖炉的CO排放因子有56.7%的减排效果,而烤火炉的CO排放因子会增加37.4%的排放量;生物质成型颗粒的含硫量低,未检测出SO2排放;相对于散煤,生物质成型颗粒在NOx方面并无减排效果。  相似文献   

9.
Consumers’ choices play a key role for the development of biomass heating in the residential sector. The city of Oslo has granted subsidies to households who change to new, improved low-emission woodstoves. The purpose of this study is to expand the knowledge about users’ experiences and attitudes to residential biomass heating. An adapted model of the Theory of Planned Behavior was used to model households’ inclination to continue using their woodstoves for heating. More than 800 questionnaires were collected from households that recently had invested in an improved woodstove. The respondents were satisfied with the new woodstoves. The respondents also considered themselves competent to use and maintain the stove and few had problems acquiring fuelwood. Further analyses showed that the intention to continue to use the new woodstove depends on economic benefits, heating performance, perceived time and effort to operate the stove, environmental effects of heating as well as perceived subjective norm. The results imply that when marketing a modern technology for bioenergy heating, both public authorities and producers should consider issues related to the users’ perception of subjective norm, such as perceived status of using bioenergy or environmental concerns, when designing campaigns to promote the use of woodstoves.  相似文献   

10.
《Biomass & bioenergy》2007,31(1):73-79
In this paper, the flue gas emissions of carbon monoxide (CO), nitrogen oxides (NOX), sulphur dioxide (SO2) and soot from an improved space-heating biomass stove and thermal efficiency of the stove have been investigated. Various biomass fuels such as firewood, wood shavings, hazelnut shell, walnut shell, peanut shell, seed shell of apricot (sweet and hot seed type), kernel removed corncob, wheat stalk litter (for cattle and sheep pen), cornhusk and maize stalk litter (for cattle pen) and charcoal were burned in the same space-heating biomass stove. Flue gas emissions were recorded during the combustion period at intervals of 5 min. It was seen from the results that the flue gas emissions have different values depending on the characteristics of biomass fuels. Charcoal is the most appropriate biomass fuel for use in the space-heating biomass stoves because its combustion emits less smoke and the thermal efficiency of the stove is approximately 46%.  相似文献   

11.
Large dependence of the world population on biomass fuels for domestic energy consumption is one of the major anthropogenic causes of deforestation worldwide. The use of biomass in inefficient ways in rural areas increases fuelwood demand of a household. Development of the improved biomass stove programs in the 1970s has been one of the efforts to reduce burden on biomass resource base through reliable and efficient methods of energy consumption. However, despite having multiple economic, social, environmental, and health benefits; the improved stove dissemination programs failed to capture worldwide recognition. A wide array of socio-cultural, economic, political, and institutional barriers contributes to the low adoption rate of such programs. Drawing on field work surveys in rural northwest Pakistan, this paper provides empirical evidence of individual, household, and community level variables that play a vital role in the adoption of improved cookstoves. The study is based on primary data collected from 100 randomly selected households in two villages of rural northwest Pakistan. Using regression analysis, the study depicts that education and household income are the most significant factors that determine a household willingness to adopt improved biomass stoves. The study concludes that the rate of adoption could substantially be improved if the government and non-governmental organizations (NGOs) play a greater role in overcoming the social, economic, cultural, political, and institutional barriers to adopting improved cooking technologies.  相似文献   

12.
To address severe air pollution, the Chinese government plans to replace most residential coal stoves in northern China with clean heating devices by 2021. Coal stove replacement started in the “Beijing-Tianjin-Hebei (BTH)” region and is expanding throughout northern China. Removing coal stoves reduces air pollutant emissions and hence is beneficial for both air quality and public health, as well as offering greenhouse gas mitigation co-benefits. However, there is little discussion of the economic costs of various clean heating technologies. In this study, we estimate total annual costs (TAC, annualized capital costs plus annual operating costs) for rural households, across cities/counties in the BTH region, to replace their coal stoves with several prevalent clean options—air-source heat pumps with fan coils (ASHPwF), electric resistance heaters with thermal storage (RHwTS), natural gas heaters (NGH), and clean coal briquettes with improved stoves (CCIS). We find: 1) Without subsidies, CCIS have the lowest TAC of all clean options. TAC of unsubsidized CCIS approximately doubles TAC of raw coal with improved stoves (RCIS), while unsubsidized electric/gas heaters cost 3–5 times more than RCIS. Thus, it is important for governments to financially support households' replacement of their coal stoves with clean heaters to facilitate widespread adoption. 2) With subsidies, CCIS have the lowest TAC in all regions except Beijing. In Beijing, generous subsides make ASHPwF—the most energy-efficient option—have the lowest TAC. In Tianjin, TAC of subsidized ASHPwF are slightly higher than CCIS and NGH. Throughout Hebei, except for a few severely cold northern counties where gas prices are high, subsidized NGH have lower TAC than ASHPwF and RHwTS. 3) Cost competitiveness of ASHPwF increases as heat demand increases, (e.g., higher desired indoor temperatures, larger home sizes, etc.) indicating that ASHP are good options for households with larger home sizes and commercial buildings. 4) Substantial potential exists to reduce heating expenses by improving building energy efficiency particularly in severely cold regions. 5) Cost advantages of NGH vary sharply with gas prices.  相似文献   

13.
The adoption and sustained use of improved cookstoves are critical performance parameters of the cooking system that must be monitored just like the rest of the stove technical requirements to ensure the sustainability of their benefits. No stove program can achieve its goals unless people initially accept the stoves and continue using them on a long-term basis. When a new stove is brought into a household, commonly a stacking of stoves and fuels takes place with each device being used for the cooking practices where it fits best. Therefore, to better understand the adoption process and assess the impacts of introducing a new stove it is necessary to examine the relative advantages of each device in terms of each of the main cooking practices and available fuels. An emerging generation of sensor-based tools is making possible continuous and objective monitoring of the stove adoption process (from acceptance to sustained use or disadoption), and has enabled its scalability. Such monitoring is also needed for transparent verification in carbon projects and for improved dissemination by strategically targeting the users with the highest adoption potential and the substitution of cooking practices with the highest indoor air pollution or greenhouse gas contributions.  相似文献   

14.
家用生物质颗粒燃料炉的效益分析   总被引:1,自引:1,他引:0  
李海军 《节能技术》2007,25(6):566-568
家用生物质颗粒燃料炉是一种新型的炊事炉具,是现行传统炉具的更新换代产品,具有良好的经济效益和社会效益.  相似文献   

15.
Biomass is a renewable energy source that is routinely used for cooking in the developing world, especially in rural areas. The World Health Organization estimates that about 2.5 billion people globally rely on biomass, such as wood, agricultural waste and animal dung to meet their energy needs for cooking utilising traditional low-efficiency cookstoves. However, certain human health risks are associated with the inhalation of off-gases resulting from the indoor use of biomass for cooking, especially for women and children who spend more of their time at home. On the other hand, use of energy-efficient cookstoves is considered to reduce those risks. Thus, qualitative and quantitative measurements of cookstove performance are necessary in order to make different stoves and different cooking processes comparable. The aim of this paper is the presentation of the current situation regarding biomass use for cooking with emphasis placed on the developing world, the brief of the adverse health impacts of biomass burning based on the review of literature, the presentation of the merits of improved efficiency cookstoves and to highlight the need for stove performance tests. The demand of different types of biomass is not likely to change in the near future in the developing world since biomass is readily available and cheap. Thus, the efforts to improve household air quality must concentrate on improving cookstoves efficiency and ventilation of the flue gases outdoors. Programmes for the improvement of the cookstoves efficiency in the developing world should be part of the development agenda.  相似文献   

16.
Indoor air pollution from burning solid fuels for cooking is a major environmental health problem in developing countries, predominantly affecting children and women. Traditional household energy practices also contribute to substantial time loss and drudgery among households. While effective interventions exist, levels of investment to date have been very low, in part due to lack of evidence on economic viability. Between 2004 and 2007, different combinations of interventions – improved stoves, smoke hoods and a switch to liquefied petroleum gas – were implemented in poor communities in Nepal, Sudan and Kenya. The impacts were extensively evaluated and provided the basis for a household-level cost-benefit analysis, which essentially followed the methodology proposed by the World Health Organization. The results suggest that interventions are justified on economic grounds with estimated internal rates of return of 19%, 429% and 62% in Nepal, Kenya and Sudan, respectively. Time savings constituted by far the most important benefit followed by fuel cost savings; direct health improvements were a small component of the overall benefit. This paper describes the methodology applied, discusses the findings and highlights the methodological challenges that arise when a global approach is applied to a local programme.  相似文献   

17.
This paper discusses experiences from the renewable energy program of Grameen Shakti (GS), which is aimed to provide energy to rural areas. GS has already passed 3 years in marketing solar home system in rural Bangladesh. Within this short period, GS gathered a lot of experience in marketing the solar home system. Up to July 1999, GS had sold 1147 solar home systems and the installed capacity was 53.3 kWp. Customers use these systems for various purposes like, lighting houses, shops, offices, watching TV, operating computer and so on. The systems are functioning well. Some of the customers have enhanced income through PV systems by extending working hours and selling power to neighbors. There are various obstacles for expansion of PV program in rural Bangladesh, the main barrier being the high cost of PV module. To make the system affordable, customers need easier financing scheme. GS offers easier financing terms to the customers so that they can afford solar home system.  相似文献   

18.
《Biomass & bioenergy》2008,32(12):1349-1352
The paper addresses the studies of a wood gas stove in meeting cooking energy requirement using biomass gasification. The stove works on natural draft mode. The thermal efficiency of the stove was recorded at about 26.5% and it can be started, operated and stopped with very low emissions. It can use a wide variety of biomass fuels. The produced wood gas burns with a blue flame like liquid petroleum gas with a flame temperature of 736 °C. The design criteria, safety measures and operating procedure of wood gas stoves are presented in this paper.  相似文献   

19.
Malawi has set a target of adoption of two million improved cookstoves (ICS) by 2020. Meeting this objective requires knowledge about determinants of adoption, particularly in rural areas where the cost of traditional cooking technologies and fuels are non-monetary, and where people have limited capacity to purchase an ICS. We conducted a discrete choice experiment with 383 households in rural Malawi asking them if they would chose a locally made ICS or a package of sugar and salt of roughly equal value. Six months later, we assessed adoption and stove use patterns. Sixty-six percent of households chose the ICS. We find that having a larger share of crop residues in household fuel supply, awareness of the environmental impacts of woodfuel reliance, time the primary cook devotes to collecting fuelwood, and peer effects at the village-level increase the odds of choosing the ICS. Having a large labor supply for fuelwood collection and experience with a non-traditional cooking technology decreased the odds of choosing the ICS. In a rapid assessment six months after stoves were distributed, we found 80% of households were still using the ICS, but not exclusively. Our findings suggest considerable potential for wide-scale adoption of low cost ICS in Malawi.  相似文献   

20.
Solar cooking is often considered “a solution looking for a problem”. Solar cookers have long been presented as an interesting solution to the world's problem of dwindling fuel wood sources and other environmental problems associated with wood fuel demand for cooking. However, recent GTZ field work in South Africa showed different benefits instead: the use of solar cookers resulted in appreciable fuel and time savings as well as increased energy security for households using commercial fuels. These observations are based on field tests in South Africa that started in 1996 to investigate the social acceptability of solar cookers and to facilitate local production and commercialisation of the technology. Impact studies and use rate studies have been carried out by a number of different organisations since the inception of the project and although commercialisation of the technology has not been achieved to its fullest potential, impact studies indicate that solar cookers have a positive development impact on households through fuel-, energy- and time savings. The article aims to summarise the findings of the various studies and present an overview of use rates and impact data. A variety of factors influence solar cooker use rates, which in turn determine impacts. Some factors are related to the user, some to the environment in which the cooker is used and some to the cooker itself. Ultimately, the data shows that on average, only 17% of solar cooker owners do not use their stoves after purchase and that active solar cooker users utilise their stoves on average for 31% of their cooking incidences. Since the majority of solar stove buyers actually use their stoves and obtain real benefits, this suggests that that solar cookers are indeed not a solution looking for a problem but a solution worth promoting.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号