首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This paper statistically examine wind characteristics from seven meteorological stations within the North-West (NW) geo-political region of Nigeria using 36-year (1971–2007) wind speed data measured at 10 m height subjected to 2-parameter Weibull analysis. It is observed that the monthly mean wind speed in this region ranges from 2.64 m/s to 9.83 m/s. The minimum monthly mean wind speed was recorded in Yelwa in the month of November while the maximum value is observed in Katsina in the month of June. The annual wind speeds range from 3.61 m/s in Yelwa to 7.77 m/s in Kano. It is further shown that Sokoto, Katsina and Kano are suitable locations for wind turbine installations with annual mean wind speeds of 7.61, 7.45 and 7.77 m/s, respectively. The results also suggest that Gusau and Zaria should be applicable for wind energy development using taller wind turbine towers due to their respective annual mean speeds and mean power density while Kaduna is considered as marginal. In addition, higher wind speeds were recorded in the morning hours than afternoon periods for this region. A technical electricity generation assessment using four commercial wind turbines were carried out. The results indicate that, while the highest annual power is obtained with Nordex N80–2.5 MW as 14233.53 kW/year in Kano, the lowest is in Yelwa having 618.06 kW/year for Suzlon S52. It is further shown that the highest capacity factor is 64.95% for Suzlon S52–600 kW in Kano while the lowest is 3.82% for Vestas V80–2 MW in Yelwa.  相似文献   

2.
The wind speed distribution and wind energy potential are investigated in three selected locations in Oyo state using wind speed data that span between 12 and 20 years measured at 10 m height. In addition, the performance of selected small to medium size wind turbines in these sites were examined. The annual energy output and capacity factor for these turbines were determined. It was found that the monthly mean wind speeds in Oyo state ranges from 2.85 m/s to 5.20 m/s. While the monthly mean power density varies between 27.08 W/m2 and 164.48 W/m2, while the annual mean power density is in the range of 67.28 W/m2 and 106.60 W/m2. Based on annual energy output, wind turbines with cut-in wind speed of about 2.5 m/s and moderate rated wind speeds will be best suited for all the sites.  相似文献   

3.
This paper presents an assessment of wind energy potentials of six selected high altitude locations within the North-West and North-East geopolitical regions, Nigeria, by using 36-year (1971–2007) wind speed data subjected to 2-parameter Weibull distribution functions. The results showed that the maximum mean wind speed is obtained in Katsina as 9.839 m/s while the minimum value of 3.397 m/s is got in Kaduna for all the locations considered. The annual wind power density and energy variation based on the Weibull analysis ranged from 368.92 W/m2 and 3224.45 kWh/m2/year to 103.14 W/m2 and 901.75 kWh/m2/year in Kano and Potiskum for the maximum and minimum values respectively. Furthermore, Katsina and Kano will be suitable for wind turbine installations while Gusau will only be appropriate for wind energy utilization using taller wind turbine towers whereas Kaduna, Bauchi and Potiskum will be considered marginal for wind power development based of their respective annual mean wind speeds and power densities.  相似文献   

4.
Modelling and prediction of wind speed are essential prerequisites in the sitting and sizing of wind power applications. The profile of wind speed in Nigeria is modelled using artificial neural network (ANN). The ANN model consists of 3-layered, feed-forward, back-propagation network with different configurations, designed using the Neural Toolbox for MATLAB. The monthly mean daily wind speed data monitored at 10 m above ground level for a period of 20 years (1983–2003) for 28 ground stations operated by the Nigeria Meteorological Services (NIMET) were used as training (18 stations) and testing (10 stations) dataset. The geographical parameters (latitude, longitude and altitude) and the month of the year were used as input data, while the monthly mean wind speed was used as the output of the network. The optimum network architecture with minimum Mean Absolute Percentage Error (MAPE) of 8.9% and correlation coefficient (r) between the predicted and the measured wind speed values of 0.9380 was obtained. The predicted monthly wind speed ranged from 0.9–13.1 m/s with an annual mean of 4.7 m/s. The model predicted wind speed values are given in the form of monthly maps, which can be easily used for assessment of wind energy potential for different locations within Nigeria.  相似文献   

5.
Egypt is one of the developing countries. The production of electricity in Egypt is basically on petroleum, natural gas, hydro-power and wind energy. The objective of this work to prove the availability of sufficient wind potential in the wide area of deep south Egypt for the operation of wind turbines there. Nevertheless, it gives in general an approximate profile which is useful to the wind parks design for this area. The data used in the calculation are published and analyzed for the first time. The diagrams of the measured wind data for three meteorological stations over a period of two years (wind speed, frequency, direction), wind shear coefficient, the mean monthly and annual wind speed profile for every location are presented. Monthly Weibull parameters, standard deviation and coefficient of variation have been statistically discussed. A comparison of the rose diagrams shows that the wind speed is more persistent and blow over this region of Egypt in two main sectors N and NNW with long duration of frequencies from 67% to 87% over the year with an average wind speed in the range 6.8-7.9 m/s at the three stations. Evaluation of monthly wind energy density at 10 m height by two different methods was carried out. And the final diagram for every site shows no significant difference between them. The annual natural wind energies at 70 m A.G.L. lie between 333 and 377 W/m2 for Dakhla South and Kharga stations, respectively, which is similar to the inland wind potential of Vindeby (Denmark) and some European countries. These results indicate that Kharga and Dakhla South locations are new explored sites for future wind power generation projects.  相似文献   

6.
In this paper, the hourly measured wind speed data for years 2003–2005 at 10 m, 30 m and 60 m height for Kingdom of Bahrain have been statically analyzed to determine the potential of wind power generation. Extrapolation of the 10 m data, using the Power Law, has been used to determine the wind data at heights of 30 m and 60 m. Weibull distribution parameters have been estimated and compared annually and on monthly bases using two methods; the graphical method and the another method, designated in this paper as approximated method, which depends on the standard deviation and average wind speed. The maximum power density for 10 m, 30 m and 60 m heights were found to be 164.33 W/m2, 624.17 W/m2 and 1171.18 W/m2 in February, respectively while the minimum power density were 65.33 W/m2, 244.33 W/m2 and 454.53 W/m2 in October, respectively. The average annual wind power density was found to be 114.54 W/m2 for 10 m height, 433.29 W/m2 for 30 m height and 816.70 W/m2 for 60 m height. Weibull probability function, using Weibull parameters estimated from the approximated method, has shown to provide more accurate prediction of average wind speed and average power density than the graphical method. In addition, the site matching of wind turbine generators at 30 m and 60 m heights has been investigated by estimating the capacity factors of various commercially available wind turbines generators. The monthly and annual variation of capacity factors have been studied to ensure optimum selection of wind turbine generators.  相似文献   

7.
Wind characteristics and wind energy resource potentials for Owerri, Nigeria are presented. These were evaluated using routine wind data measurements at a height of 10 m above ground level at the Lake Nwebere Campus, Federal University of Technology, Owerri between 1988 and 1992. The most prevailing wind is from the Southwest and the average wind speed and its variation are 2.80 and 0.81 m s−1, respectively.Accordingly, the maximum annual mean power density exploitable from the wind at this site is 7.66 ± 0.15 W m−2 out of the estimated available annual mean wind power density of 12.91 ± 0.26 W m−2. The annual mean energy density available in the wind was found to be 60.29 kW h m−2. Thus, the potential for year-round wind energy utilization in Owerri, Nigeria is rather low.  相似文献   

8.
The technical and economic feasibility study of an innovative wind–solar hybrid renewable energy generation system with rainwater collection feature for electrical energy generation is presented in this paper. The power generated would supply part of the energy requirements of the high-rise building where the system is installed. The system integrates and optimizes several green technologies; including urban wind turbine, solar cell module and rain water collector. The design was conceptualized based on the experiences acquired during the development and testing of a suitable wind turbine for Malaysian applications. It is compact and can be built on top of high-rise buildings in order to provide on-site renewable power to the building. It overcomes the inferior aspect on the low wind speed by channeling and increasing the speed of the high altitude free-stream wind through the power-augmentation-guide-vane (PAGV) before it enters the wind turbine at the center portion. The shape or appearance of the PAGV that surrounds the wind turbine can be blended into the building architecture without negative visual impact (becomes part of the building). The design improves the starting behavior of wind turbines. It is also safer to people around and reduces noise pollution. The techno-economic analysis is carried out by applying the life cycle cost (LCC) method. The LCC method takes into consideration the complete range of costs and makes cash flows time-equivalent. The evaluations show that for a system with the PAGV (30 m diameter and 14 m high) and an H-rotor vertical axis wind turbine (17 m diameter and 9 m high) mounted on the top of a 220 m high building, the estimated annual energy savings is 195.2 MW h/year.  相似文献   

9.
In this study, wind characteristics were analyzed using the wind speed data collected of the six meteorological stations in Turkey during the period 2000–2006. The annual mean wind speed of the six stations (Erzurum, Elaz??, Bingöl, Kars, Manisa and Ni?de) is obtained as 8.7, 8.5, 5.9, 6.9, 7.4 and 8.0 m/s at 10 m height, respectively. The mean annual value of Weibull shape parameter k is between 1.71 and 1.96 while the annual value of scale parameter c is between 6.81 and 9.71 m/s. A technical assessment has been made of electricity generation from four wind turbines having capacity of (600 kW, 1000 kW, 1500 kW and 2000 kW). The yearly energy output and capacity factor for the four different turbines were calculated.  相似文献   

10.
This paper analyses the wind speed of some major cities in province of Yazd which is located in central part of Iran. Also, the feasibility study of implementing wind turbines to take advantage of wind power is reviewed and then the subject of wind speed and wind potential at different stations is considered. This paper utilized wind speed data over a period of almost 13 years between 1992 and 2005 from 11 stations, to assess the wind power potential at these sites. In this paper, the hourly measured wind speed data at 10 m, 20 m and 40 m height for Yazd province have been statically analyzed to determine the potential of wind power generation. Extrapolation of the 10 m data, using the Power Law, has been used to determine the wind data at heights of 20 m and 40 m. The results showed that most of the stations have annual average wind speed of less than 4.5 m/s which is considered as unacceptable for installation of the wind turbines. City of Herat has higher wind energy potential with annual wind speed average of 5.05 m/s and 6.86 m/s, respectively, at height of 10 m and 40 m above ground level (AGL). This site is a good candidate for remote area wind energy applications. But some more information is required, because the collected data for Herat is only for 2004. Cities of Aghda with 3.96 m/s, Gariz with 3.95 m/s, and Maybod with 3.83 m/s annual wind speed average at height of 10 m above ground level are also able to harness wind by installing small wind turbines. The Tabas and Bafgh sites wind speed data indicated that the two sites have lower annual wind speed averages between 1.56 m/s and 2.22 m/s at 10 m height. The monthly and annual wind speeds at different heights have been studied to ensure optimum selection of wind turbine installation for different stations in Yazd.  相似文献   

11.
In this study wind resources evaluation and wind energy assessment of the São João do Cariri (SJC) in Paraiba (PB) state situated in Brazilian northeast were analyzed during the period 2006/2009. Wind speed (V, m/s), wind direction and air temperature (T, °C) at 25 m and 50 m were collected from SONDA (Sistema de Organização Nacional de Dados Ambientais) meteorological station (38°N 7°E). The average wind speed and temperature for 25 m and 50 m were found 4.74 m/s, 24.46 °C and 5.31 m/s 24.25 °C respectively. The wind speed predominate direction found were SSE (165°) from both 25 m and 50 m heights. The wind speed distribution curve was obtained using the Weibull probability density function through the WAsP program, the values of Weibull shape (K), scale (A, m/s) and Weibull fit wind speed and power wind density (P, W/m2) were found 2.54, 5.4 m/s, 4.76 m/s and 103 W/m2 for 25 m wind height measurements and 2.59, 6.0 m/s, 5.36 m/s and 145 W/m2 for 50 m wind height measurements. The cost (€/kWh) from electrical wind energy obtained by wind turbine generation, at 25 m height, was found 0.046 by using 300 kW power rated wind turbine, in the best scenario, with an associate Cf of 14.5%.  相似文献   

12.
The study is used to assess the wind energy potential of Maiduguri and Potiskum, two sites in North-East, Nigeria. 21 years (1987–2007) monthly mean wind data at 10 m height were assessed from the Nigeria Meteorological department and subjected to 2-parameter Weibull and other statistical analyzes. The result showed that average monthly mean wind speed variation for Potiskum ranged from 3.90 to 5.85 m/s, while for Maiduguri, it ranged from 4.35 to 6.33 m/s. Seasonally, data variation between the dry and wet seasons revealed that, the mean wind speed variation for Potiskum ranged from 4.46 (for dry) to 5.16 m/s (for wet), while for Maiduguri it ranged from 5.10 (dry) to 5.59 m/s (wet). The wind power density variation based on the Weibull analysis ranged from 102.54 to 300.15 W/m2 for Potiskum and it ranged from 114.77 to 360.04 W/m2 for Maiduguri respectively. Moreover, Maiduguri was found to be the better of the sites in terms of monthly and seasonal variation of mean wind speed, but they both can be suitable for stand alone and medium scale wind power generation.  相似文献   

13.
In this study, a ten minute period measuring wind speed data for year 2007 at 10 m, 30 m and 40 m heights for different places in Iran, has been statistically analyzed to determine the potential of wind power generation. Sixty eight sites have been studied. The objective is to evaluate the most important characteristics of wind energy in the studied sites. The statistical attitudes permit us to estimate the mean wind speed, the wind speed distribution function, the mean wind power density and the wind rose in the site at three different heights. Some local phenomena are also considered in the characterization of the site.  相似文献   

14.
The analysis of wind data collected throughout the Southern Appalachian Mountain region of the Southeastern US is presented. Data were collected at 50 m above ground level on nine ridge top sites between 2002 and 2005. Monthly average wind speeds, power densities, wind sheers, and turbulence intensities, along with monthly maximum gusts, are presented. Measured annual average wind speeds are compared to AWS TrueWind predictions. Diurnal variations in wind speed are also reported. Annual wind roses for each site are presented. Annual wind speeds range from 5.5 to 7.4 m/s with the highest annual average wind speeds found on ridges near the northern TN–NC border. A 20% winter and nighttime enhancement of the wind speed was observed. The prevailing wind is from the westerly directions. The estimated annual energy outputs from a small wind farm consisting of fifteen 1.5 MW GE turbines range from 50 to 75 MkWh, and estimated capacity factors range from 25% to 35%. This analysis suggests that ridges in the region are suitable for utility-scale wind development.  相似文献   

15.
M.R. Islam  R. Saidur  N.A. Rahim 《Energy》2011,36(2):985-992
The wind resource is a crucial step in planning a wind energy project and detailed knowledge of the wind characteristic at a site is needed to estimate the performance of a wind energy project. In this paper, with the help of 2-parameter Weibull distribution, the assessment of wind energy potentiality at Kudat and Labuan in 2006-2008 was carried out. “WRPLOT” software has been used to show the wind direction and resultant of the wind speed direction. The monthly and yearly highest mean wind speeds were 4.76 m/s at Kudat and 3.39 m/s at Labuan respectively. The annual highest values of the Weibull shape parameter (k) and scale parameter (c) were 1.86 and 3.81 m/s respectively. The maximum wind power density was found to be 67.40 W/m2 at Kudat for the year 2008. The maximum wind energy density was found to be 590.40 kWh/m2/year at Kudat in 2008. The highest most probable wind speed and wind speed carrying maximum energy were estimated 2.44 m/s at Labuan in 2007 and 6.02 m/s at Kudat in 2007. The maximum deviation, at wind speed more than 2 m/s, between observed and Weibull frequency distribution was about 5%. The most probable wind directions (blowing from) were 190° and 269° at Kudat and Labuan through the study years. From this study, it is concluded that these sites are unsuitable for the large-scale wind energy generation. However, small-scale wind energy can be generated at the turbine height of 100 m.  相似文献   

16.
Wind characteristics have been analyzed based on long-term measured data of monthly mean wind speed of seven meteorological stations along the east coast of Red Sea in Egypt. It was found that the windiest stations (Region A) namely (Zafarana, Abu Darag, Hurghada and Ras Benas) have annual mean wind speeds (7.3, 7.2, 6.4 and 5.5 m/s) at 10 m height, respectively.Numerical estimations using measured wind speeds and frequencies to calculate the two Weibull parameters were carried out and two methods were applied.The methodical analysis for the corrected monthly wind power density at a height of 10 m above ground level, over roughness class 0 (water), for each station was done. The recommended correlation equation was also stated for Red Sea zone in Egypt. Also the corrected annual wind power density at the heights (50–70) m was obtained for all stations. Moreover, calculations show that the four stations in (Region A) have a huge energy potential available (430–1000 W/m2) at 70 m height, while Quseir and Suez stations (Region B) have good wind power density (170–190 W/m2) at 50 m height.A technical and economic assessment has been made of electricity generation from two turbines machines having capacity of (1000 and 600 kW) considered in Regions A & B, respectively, using WASP program. The yearly energy output, capacity factor and the electrical energy cost of kWh produced by the two different turbines in each region were estimated. The production costs of four stations in Region A was found to be less than 2€ cent/kWh and compared with retail tariff.  相似文献   

17.
The share of renewable energy sources in Algeria primary energy supply is relatively low compared with European countries, though the trend of development is positive. One of the main strategic priorities of NEAL (New Energy Algeria), which is Algeria's renewable energy agency (government, Sonelgaz and Sonatrach), is striving to achieve a share of 10–12% renewable energy sources in primary energy supply by 2010.This article presents techno-economic assessment for off-grid hybrid generation systems of a site in south western Algeria. The HOMER model is used to evaluate the energy production, life-cycle costs and greenhouse gas emissions reduction for this study. In the present scenario, for wind speed less than 5.0 m/s the existing diesel power plant is the only feasible solution over the range of fuel prices used in the simulation. The wind diesel hybrid system becomes feasible at a wind speed of 5.48 m/s or more and a fuel price of 0.162$/L or more. If the carbon tax is taken into consideration and subsidy is abolished, then it is expected that the hybrid system will become feasible. The maximum annual capacity shortage did not have any effect on the cost of energy, which may be accounted for by larger sizes of wind machines and diesel generators.  相似文献   

18.
The aim of this study is to estimate the technical potential of wind energy in Vietnam and discuss strategies for promoting the market penetration of wind energy in the country. For the wind resource assessment, a geographical information system (GIS)- assisted approach has been developed. It is found that Vietnam has a good potential for wind energy. About 31,000 km2 of land area can be available for wind development in which 865 km2 equivalents to a wind power of 3572 MW has a generation cost less than 6 US cents/kWh. The study also proves that wind energy could be a good solution for about 300,000 rural non-electrified households. While wind energy brings about ecological, economic and social benefits, it is only modestly exploited in Vietnam, where the main barrier is the lack of political impetus and a proper framework for promoting renewable energy. The priority task therefore is to set a target for renewable energy development and to find instruments to achieve such a target. The main instruments proposed here are setting feed-in tariff and providing investment incentives.  相似文献   

19.
In this paper, the hourly measured wind speed data for years 2007–2010 at 10 m, 30 m and 40 m height for Binalood region in Iran have been statically analyzed to determine the potential of wind power generation. The study showed that the long-term wind speeds were found to be relatively high. The numerical values of the dimensionless Weibull shape parameter (k) and Weibull scale parameters (c) were also determined. Based on these data, it was found that the numerical values of the shape and scale parameters for Binalood varied over a wide range. The yearly values of k at 40 m elevation range from 2.165 to 2.211 with a mean value of 2.186, while those of c are in the range of 7.683–8.016 with a mean value of 7.834. However, the yearly mean wind speed, mean power density and power density of Binalood at 40 m height are found as 5.923 m/s, 305.514 W/m2 and 2676.30 (kWh/m2/year) respectively. The results show that Binalood has available great wind energy potential for grid connection system.  相似文献   

20.
It is likely that intermittent renewable sources such as wind and solar will provide the greatest opportunity for future large-scale hydrogen production. Here, on-shore wind is examined. Global wind energy is estimated by placing one 2 MW turbine/km2 over the surface of the earth. Wind energy production is based on monthly mean wind speed data. Wind turbines are grouped to form arrays that are linked to local hydrogen generation and transmission networks. Hydrogen generation is done via low-pressure electrolysis and transmission via high-pressure gas pipelines. The wind/hydrogen system is considered within a global energy system that must not only provide hydrogen, but also energy for electricity consumption at the local generation site. The technical potential of the hydrogen produced is estimated to be 116 EJ. Uneven distribution of the hydrogen-rich sites results in the need to export much of the hydrogen produced to energy-poor regions. To overcome system losses, a combined wind/HVDC/hydrogen system is considered.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号