首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 12 毫秒
1.
Selecting a site that meets the technical requirements for a concentrating solar power plant (CSP) is a very critical exercise. This paper points out crucial factors and provides guidelines regarding the selection of suitable sites. It especially focuses on Sahelian countries which have their own climatic peculiarities. These countries, characterized by low access to electricity, are well endowed in solar resources. They are potentially good locations for concentrating solar power plants since their mean daily solar radiation exceeds 5.5 kWh/m2. CSP presents therefore, a good opportunity for them to increase in a sustainable manner, their energy supply. The guidelines developed in this paper are applied to Burkina Faso as a case study.  相似文献   

2.
Several energy scenario studies consider concentrated solar power (CSP) plants as an important technology option to reduce the world’s CO2 emissions to a level required for not letting the global average temperature exceed a threshold of 2–2.4 °C. A global ramp up of CSP technologies offers great economic opportunities for technology providers as CSP technologies include highly specialised components. This paper analyses possible value creation effects resulting from a global deployment of CSP until 2050 as projected in scenarios of the International Energy Agency (IEA) and Greenpeace International. The analysis focuses on the economic opportunities of German technology providers since companies such as Schott Solar, Flabeg or Solar Millennium are among the leading suppliers of CSP technologies on the global market.  相似文献   

3.
Portugal has a high potential for concentrated solar power and namely for atmospheric air volumetric central receiver systems (CRS). The solar multiple and storage capacity have a significant impact on the power plant levelized electricity cost (LEC) and their optimization and adequate control strategy can save significant capital for the investors. The optimized proposed volumetric central receiver system showed good performance and economical indicators.For Faro conditions, the best 4 MWe power plant configuration was obtained for a 1.25 solar multiple and a 2 h storage. Applying control strategy #1 (CS#1) the power plant LEC is 0.234 €/kWh with a capital investment (CAPEX) of € 22.3 million. The capital invested has an internal rate of return (IRR) of 9.8%, with a payback time of 14 years and a net present value (NPV) of € 7.9 million (considering an average annual inflation of 4%). In the case of better economical indicators, the power plant investment can have positive contours, with an NPV close to € 13 million (annual average inflation of 2%) and the payback shortened to 13 years.  相似文献   

4.
The line‐/point‐focus combined scheme for concentrating solar power (CSP) system is proposed. For solar field, the parabolic trough (PT) or linear Fresnel (LF) is used as the line‐focus preheating and evaporation stages while the solar tower is used as the point‐focus superheating and reheating stages. The combined schemes benefit from the high concentration ratio of point‐focus technology and low cost of line‐focus technology. Particularly, the combined scheme guarantees the concentrated solar thermal energy matching the temperature requirement of steam generation process with less exergy loss. Performance and economic assessments have been performed for 50 MWe CSP system with two of the combined schemes, ie, PT (synthetic oil, SO) + Tower (molten salt, MS) and LF (direct steam generation, DSG) + Tower (DSG), as well as existing single schemes being the references, ie, PT (SO), LF (DSG), Tower (MS), and Tower (DSG). The comparative results show that the combined schemes are superior to liner‐focus schemes in efficiency and to point‐focus schemes in capital cost and scalability. Specifically, the PT (SO) + Tower (MS) system suggests the favorable potential in practical application with the highest annual net solar‐to‐electrical energy conversion efficiency of 16.07% and the reasonable levelized cost of electricity (LCOE) of 16.121 US cent/(kW·h). This work provides an alternative guidance for future development of the CSP technology.  相似文献   

5.
The combination of desalination technology into concentrating solar power (CSP) plants needs to be considered for the planned installation of CSP plants in arid regions. There are interesting synergies between the two technologies, like the possibility of substituting the condenser of the power cycle for a thermal desalination unit. This paper presents a thermodynamic evaluation of different configurations for coupling parabolic-trough (PT) solar power plants and desalination facilities in a dry location representing the Middle East and North Africa (MENA) region. The integration of a low-temperature multi-effect distillation (LT-MED) plant fed by the steam at the outlet of the turbine replacing the condenser of the power cycle has been simulated and compared with the combination of CSP with a reverse osmosis (RO) plant. Furthermore, an additional novel concept of concentrating solar power and desalination (CSP+D) has been evaluated: a LT-MED powered by the steam obtained from a thermal vapour compressor (TVC) using the exhaust steam of the CSP plant as entrained vapour and steam extracted from the turbine as the motive vapour of the ejector. This new concept (LT-MED-TVC) has been analyzed and compared with the others, evaluating its optimization for the integration into a CSP plant by considering different extractions of the turbine.  相似文献   

6.
Because of the pressing need for maintaining a healthy environment with reasonable costs, China is moving toward the trend for generating electricity from renewable resources. Both solar energy and wind power have received a tremendous attention from private associations, political groups, and electric power companies to generate power on a large scale. A drawback is their unpredictable nature and dependence on weather. Fortunately, the problems can be partially tackled by using the strengths of one source to overcome the weakness of the other. Especially, a large fraction of the solar resource is available at times of peak electrical load. However, the complexity of using two different resources together makes the hybrid solar-wind generation systems more difficult to analyze. Accordingly, this paper first briefly introduces the solar-wind generation system and next develops its critical success criteria. Then, a fuzzy analytic hierarchy process associated with benefits, opportunities, costs and risks, is proposed to help select a suitable solar-wind power generation project.  相似文献   

7.
Volker Quaschning   《Solar Energy》2004,77(2):171-178
Concentrating solar thermal power and photovoltaics are two major technologies for converting sunlight to electricity. Variations of the annual solar irradiation depending on the site influence their annual efficiency, specific output and electricity generation cost. Detailed technical and economical analyses performed with computer simulations point out differences of solar thermal parabolic trough power plants, non-tracked and two-axis-tracked PV systems. Therefore, 61 sites in Europe and North Africa covering a global annual irradiation range from 923 to 2438 kW h/m2 a have been examined. Simulation results are usable irradiation by the systems, specific annual system output and levelled electricity cost. Cost assumptions are made for today's cost and expected cost in 10 years considering different progress ratios. This will lead to a cost reduction by 50% for PV systems and by 40% for solar thermal power plants. The simulation results show where are optimal regions for installing solar thermal trough and tracked PV systems in comparison to non-tracked PV. For low irradiation values the annual output of solar thermal systems is much lower than of PV systems. On the other hand, for high irradiations solar thermal systems provide the best-cost solution even when considering higher cost reduction factors for PV in the next decade. Electricity generation cost much below 10 Eurocents per kW h for solar thermal systems and about 12 Eurocents/kW h for PV can be expected in 10 years in North Africa.  相似文献   

8.
Direct steam generation (DSG) in parabolic trough collectors causes an increase to competitiveness of solar thermal power plants (STPP) by substitution of oil with direct steam generation that results in lower investment and operating costs. In this study the integrated solar combined cycle system with DSG technology is introduced and techno-economic assessment of this plant is reported compared with two conventional cases. Three considered cases are: an integrated solar combined cycle system with DSG technology (ISCCS-DSG), a solar electric generating system (SEGS), and an integrated solar combined cycle system with HTF (heat transfer fluid) technology (ISCCS-HTF).This study shows that levelized energy cost (LEC) for the ISCCS-DSG is lower than the two other cases due to reducing O&M costs and also due to increasing the heat to electricity net efficiency of the power plant. Among the three STPPs, SEGS has the lowest CO2 emissions, but it will operate during daytime only.  相似文献   

9.
A methodology for assessing solar cooling technologies is proposed. The method takes into account location specific boundary conditions such as the cooling demand time series, solar resource availability, climatic conditions, component cost and component performance characteristics. This methodology evaluates the techno-economic performance of the solar collector/chiller system. We demonstrate the method by systematic evaluation of 25 feasible combinations of solar energy collection and cooling technologies. The comparison includes solar thermal and solar electric cooling options and is extended to solar cooling through concentrated solar power plants. Solar cooling technologies are compared on an economic and overall system efficiency perspective. This analysis has implication for the importance of solar load fraction and storage size in the design of solar cooling systems. We also stress the importance of studying the relation between cooling demand and solar resource availability, it was found that overlooking this relation might lead to overestimations of the potential of a solar cooling system in the range of 22% to over 100% of the actual potential.  相似文献   

10.
Innovation in concentrated solar power   总被引:3,自引:0,他引:3  
This work focuses on innovation in CSP technologies over the last decade. A multitude of advancements has been developed during this period, as the topic of concentrated solar power is becoming more mainstream. Improvements have been made in reflector and collector design and materials, heat absorption and transport, power production and thermal storage. Many applications that can be integrated with CSP regimes to conserve (and sometimes produce) electricity have been suggested and implemented, keeping in mind the environmental benefits granted by limited fossil fuel usage.  相似文献   

11.
The effect on the cost of electricity from concentrating solar power (CSP) plants of the solar multiple, the capacity factor and the storage capacity is studied. The interplay among these factors can be used to search for a minimal-cost objective that can serve as a technical criterion to guide in the design of economic incentives for CSP plants. The probability-density function of irradiation is used in conjunction with screening models to evaluate the performance characteristics and costs of concentrating solar power plants. Two technologies have been analyzed in this study: parabolic-trough and tower plants. The results provide information to define the optimal operational range as a function of the desired objective. Thus, it is possible to derive a technical criterion for the design of CSP plants which optimizes the solar electricity produced and its generation cost. The methodology is applied to Spain, and the analysis of the results shows that a solar energy production of 37 kWh/m2/year for tower plants and 66 kWh/m2/year for parabolic-trough ones define the approximate optimal working conditions for the mean DNI in Spain.  相似文献   

12.
In Algeria, the electricity demand is rapidly increasing. At the same time, Algeria is very rich in solar energy resources and possesses large wasteland areas in the Sahara that represent 80% of the total area and the market of solar energy is very promising. All these indicators make Algeria an ideal country for the implementation of the Concentrating Solar Thermal Power Plant technologies (CSTPP). In order to study whether the implementation of CSTPP under Algerian climate is economically feasible, we present in this article a techno economic assessment of 100 MW of CSTPP based on Dish Stirling technology using hydrogen as working fluid for centralized electricity production located in three typical sites of each geographical regions of Algeria (Algiers, In Salah and Tamanrasset). The National Renewable Energy Laboratory’s SAM software (Solar Advisor Model) is used to evaluate the monthly energy production, annual energy output and the Levelized cost of energy (LCOE) for this study. The results indicate that Tamanrasset is the suitable site yielding the lower LCOE (11.5 c$/kWh) and the higher annual net electric energy output (221 GWh/y).  相似文献   

13.
Solar home systems are typically used for providing basic electricity services to rural households that are not connected to electric grid. Off-grid PV power plants with their own distribution network (micro/minigrids) are also being considered for rural electrification. A techno-economic comparison of the two options to facilitate a choice between them is presented in this study on the basis of annualised life cycle costs (ALCC) for same type of loads and load patterns for varying number of households and varying length and costs of distribution network. The results highlight that microgrid is generally a more economic option for a village having a flat geographic terrain and more than 500 densely located households using 3–4 low power appliances (e.g. 9 W CFLs) for an average of 4 h daily. The study analyses the viability of the two options from the perspectives of the user, an energy service company and the society.  相似文献   

14.
Concentrating Solar Power (CSP) plants typically incorporate one or various auxiliary boilers operating in parallel to the solar field to facilitate start up operations, provide system stability, avoid freezing of heat transfer fluid (HTF) and increase generation capacity. The environmental performance of these plants is highly influenced by the energy input and the type of auxiliary fuel, which in most cases is natural gas (NG). Replacing the NG with biogas or biomethane (BM) in commercial CSP installations is being considered as a means to produce electricity that is fully renewable and free from fossil inputs. Despite their renewable nature, the use of these biofuels also generates environmental impacts that need to be adequately identified and quantified. This paper investigates the environmental performance of a commercial wet-cooled parabolic trough 50 MWe CSP plant in Spain operating according to two strategies: solar-only, with minimum technically viable energy non-solar contribution; and hybrid operation, where 12% of the electricity derives from auxiliary fuels (as permitted by Spanish legislation). The analysis was based on standard Life Cycle Assessment (LCA) methodology (ISO 14040-14040). The technical viability and the environmental profile of operating the CSP plant with different auxiliary fuels was evaluated, including: NG; biogas from an adjacent plant; and BM withdrawn from the gas network. The effect of using different substrates (biowaste, sewage sludge, grass and a mix of biowaste with animal manure) for the production of the biofuels was also investigated. The results showed that NG is responsible for most of the environmental damage associated with the operation of the plant in hybrid mode. Replacing NG with biogas resulted in a significant improvement of the environmental performance of the installation, primarily due to reduced impact in the following categories: natural land transformation, depletion of fossil resources, and climate change. However, despite the renewable nature of the biofuels, other environmental categories like human toxicity, eutrophication, acidification and marine ecotoxicity scored higher when using biogas and BM.  相似文献   

15.
This paper analyses the operation of an adaptive neuro-fuzzy inference system (ANFIS)-based maximum power point tracking (MPPT) for solar photovoltaic (SPV) energy generation system. The MPPT works on the principle of adjusting the voltage of the SPV modules by changing the duty ratio of the boost converter. The duty ratio of the boost converter is calculated for a given solar irradiance and temperature condition by a closed-loop control scheme. The ANFIS is trained to generate maximum power corresponding to the given solar irradiance level and temperature. The response of the ANFIS-based control system is highly precise and offers an extremely fast response. The response time is seen as nearly 1 ms for fast varying cell temperature and 6 ms for fast varying solar irradiance. The simulation is done for fast-changing solar irradiance and temperature conditions. The response of the proposed controller is also presented.  相似文献   

16.
The output power prediction by a photovoltaic (PV) system is an important research area for which different techniques have been used. Solar cell modeling is one of the most used methods for power prediction, the accuracy of which strongly depends on the selection of cell parameters. In this study, a new integrated single‐diode solar cell model based on three, four, and five solar cell parameters is developed for the prediction of PV power generation. The experimental validation of the predicted results is done under outdoor climatic conditions for an Indian location. The predicted power by three models is found close to measured values within 4.29% to 4.76% accuracy range. The comparative power estimation analysis by these models shows that the three‐parameter model gives higher accuracy for low solar irradiance values <150 W/m2, the four‐parameter model in the range of 150 to 500 W/m2, and the five‐parameter model for >500 W/m2. The present model is also compared with other models in literature and is found to be more accurate with less percentage error. The overall results also show that the power produced depends on temperature and solar radiation levels at a particular location. Thus, single solar cell model developed can be used with sufficient accuracy for power forecast of PV systems for any location worldwide. The follow‐up research areas are also identified.  相似文献   

17.
Hydrogen (H2) production from fossil fuels using Hydrocarbon Reforming Methods (HRM) accounts for nearly 95% of Global H2 production. Unlike hybrid Chemical Looping Steam Reforming (CL-SR) systems, the Integrated Solar-Driven Sorption Enhanced–Chemical Looping of Hydrocarbon Reforming (SE-CL-HR) utilises solar thermal energy from the Concentrating Solar Power (CSP) system to drive the endothermic decomposition of feedstocks. Furthermore, the simulated hybrid systems utilise recovered heat to generate electricity, reuse of by-product CO2 for more syngas production and finaly, CO2 capture by reaction of CaO to form CaCO3. This work focused on simulating hybrid CSP systems and SE-CL-HR plants with Heat Transfer Fluid (HTF) output temperatures between 750 and 1050 °C. In this study, System Advisor Model (SAM) and MATLAB software are used to develop the CSP system. While the CSP result saved in the MATLAB workspace gets exported to Simulink to feed SE-CL-SMR, SE-CL-POX and SE-CL-ATR Aspen plus models. The integrated system was fed with CH4 as the working fluid of the solar furnace. Stoichiometric and Gibbs free-energy minimisation were employed to investigate the effect of operating parameters. The output of the integrated system shows ≥9.5% exergy efficiency in comparison to conventional HRM. In addition, CO2 capture by CaO and high-pH water (Ca, Mg, Na+, O2, OH and Cl) to produce CaCO3, MgCO3 and other valuable products was also investigated in a process simulation. The research results revealed that for 8.1 tons/hr of CH4 and 277.1 tons/hr H2O (steam) flowrates, 62 tons/hr of H2 can be generated and 338.5 tons/hr of CO2 emission can be reused and captured by the adoption of these new innovative technologies.  相似文献   

18.
Thermal energy storage (TES) is recognised as a key technology for further deployment of renewable energy and to increase energy efficiency in our systems. Several technology roadmaps include this technology in their portfolio to achieve such objectives. In this paper, a first attempt to collect, organise and classify key performance indicators (KPI) used for TES is presented. Up to now, only KPI for TES in solar power plants (CSP) and in buildings can be found. The listed KPI are quantified in the literature and compared in this paper. This paper shows that TES can only be implemented by policy makers if more KPI are identified for more applications. Moreover, close monitoring of the achievements of the already identified KPI needs to be carried out to demonstrate the potential of TES.  相似文献   

19.
聚光型太阳能热发电(CSP)是可能实现太阳能大规模利用的形式之一,其技术可行性已得到证明,并在个别国家进入了预商业化阶段。文章对目前世界上聚光型太阳能热发电的发展现状及未来发展障碍进行了阐述,针对我国发展CSP技术进行了风险分析,并提出了若干建议。  相似文献   

20.
Using a panel database for 27 programs in 16 U.S. states over 1998–2009, we assess the impact of 12 state-level policies on the cost and deployment of solar photovoltaic (PV) technologies for two sectors defined by system sizes: residential (<10 kW) and commercial (10−100 kW). We first examine the impact of policies on the deployment of solar PV. We show that cash incentives increase the deployment of commercial systems. We also show that interconnection standards potentially promote the deployment of residential systems, whereas property tax incentives potentially foster the deployment of commercial systems. We next examine the impact of policies on the cost of solar PV, and show that the key policies have different effects on costs. The cost of residential systems declines faster if there are cash or property tax incentives in place, whereas the presence of interconnection standards potentially accelerates the decline in commercial system costs. Further, states with a renewable portfolio standard see residential system costs potentially declining slower than states without such a policy. As solar PV is at the brink of becoming cost competitive, our findings assist regulators in fine-tuning their set of support tools.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号