首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Subsolidus phase relations in the low-Y2O3 portion of the system ZrO2-Y2O3 were studied using DTA with fired samples and X-ray phase identification and lattice parameter techniques with quenched samples. Approximately 1.5% Y2O3 is soluble in monoclinic ZrO2, a two-phase monoclinic solid solution plus cubic solid solution region exists to ∼7.5% Y2O3 below ∼500°C, and a two-phase tetragonal solid solution plus cubic solid solution exists from ∼1.5 to 7.5% Y2O3 from ∼500° to ∼1600°C. At higher Y2O3 compositions, cubic ZrO2 solid solution occurs.  相似文献   

2.
The solid sodium electrolyte β"-Al2O3 (Li-stabilized) was strengthened with additions of tetragonal ZrO2 (15 vol%). The conductivity of this composite material, measured in an Na/Na cell, was 7.7 Ω· at 300°C. Average values of strength and the critical stress intensity factor were 350 MPa and 4.5 MPa·m1/2, respectively, for the sintered composite material.  相似文献   

3.
Single-phase, cubic solid solutions of baseline composition 25% Y2O3—75% Bi2O3 with and without aliovalent dopants were fabricated by pressureless sintering of powder compacts. CaO, SrO, ZrO2, or ThO2 was added as an aliovalent dopant. Sintered samples were annealed between 600° and 650°C for up to 4000 h. Samples doped with ZrO2 or ThO2 remained cubic, depending upon the dopant concentration, even after long-term annealing. By contrast, undoped, CaO-doped, and SrO-doped samples transformed to the low-temperature, rhombohedral phase within ∼ 200 h. Conductivity measurements showed no degradation of conductivity in samples that did not undergo the transformation. In samples that underwent the transformation, a substantial decrease in conductivity occurred. The enhanced stability of the ZrO2- and ThO2-doped samples is rationalized on the basis of suppressed interdiffusion on the cation sublattice.  相似文献   

4.
In the system ZrO2-Al2O3, cubic ZrO2 solid solutions containing up to 40 mol% Al2O3 crystallize at low temperatures from amorphous materials prepared by the simultaneous hydrolysis of zirconium and aluminum alkoxides. The values of the lattice parameter, a, increase linearly from 0.5095 to 0.5129 nm with increasing Al2O3 content. At higher temperatures, the solid solutions transform into tetragonal ZrO2 and α-Al2O3. Pure ZrO2 crystallizes in the tetragonal form at 415° to 440°C.  相似文献   

5.
The electrical conductivity of M2O3-ZrO2 compositions containing 6 to 24 mole % M2O3, where M represents La, Sm, Y, Yb, or Sc, was examined. Only Sm2O3, Y2O3, and Yb2O3 formed cubic solid solutions with ZrO2 over most of this substitutional range. Scandia forms a wide cubic solid solution region with ZrO2 at temperatures above 130°C whereas the cubic solid solution region at room temperature is narrow (6 to 8 mole % Sc2O3). Lanthana additions to ZrO2produced no fluorite-type cubic solid solutions within the compositional range investigated. Generally, the electrical conductivity of these cubic solid solutions increased as the size of the substituted cation decreased and the electrical conductivity for each binary system attained a maximum at about 10 to 12 mole % M2O3.  相似文献   

6.
Composites of β-Ce2O3·11Al2O3 and tetragonal ZrO2 were fabricated by a reductive atmosphere sintering of mixed powders of CeO2, ZrO2 (2 mol% Y2O3), and Al2O3. The composites had microstructures composed of elongated grains of β-Ce2O3·11Al2O3 in a Y-TZP matrix. The β-Ce2O3·11Al2O3 decomposed to α-Al2O3 and CeO2 by annealing at 1500°C for 1 h in oxygen. The elongated single grain of β-Ce2O3·11Al2O3 divided into several grains of α-Al2O3 and ZrO2 doped with Y2O3 and CeO2. High-temperature bending strength of the oxygen-annealed α-Al2O3 composite was comparable to the β-Ce2O3·11Al2O3 composite before annealing.  相似文献   

7.
The quenching technique has been used to determine equilibrium relations in the system manganese oxide-Cr2O3 in air in the temperature range 600° to 1980°C. The following isobaric invariant situations have been determined: At 910°± 5°C tetragonal Mn3O4 solid solution, cubic Mn3O4 solid solution (=spinel), Mn2O3 solid solution, and gas coexist in equilibrium. Cubic Mn3O4 solid solution, Cr2O3 solid solution, liquid, and gas are present together in equilibrium at 1970°± 20°C. The invariant situation at which cubic Mn3O4 solid solution, Mn2O3 solid solution, Cr2O3 solid solution, and gas exist together in equilibrium is below 600°C.  相似文献   

8.
The pseudoternary system ZrO2-Y2O3-Cr2O3 was studied at 1600°C in air by the quenching method. Only one intermediate compound, YCrO3, was observed on the Y2O3−Cr2O3 join. ZrO2 and Y2O3 formed solid solutions with solubility limits of 47 and 38 mol%, respectively. The apex of the compatibility triangle for the cubic ZrO2, Cr2O3, and YCrO3 three-phase region was located at =17 mol% Y2O3 (83 mol% ZrO2). Below 17 mol% Y2O3, ZrO2 solid solution coexisted with Cr2O3. Cr2O3 appears to be slightly soluble in ZrO2(ss).  相似文献   

9.
The subsolidus phase relations in the entire system ZrO2-Y2O3 were established using DTA, expansion measurements, and room- and high-temperature X-ray diffraction. Three eutectoid reactions were found in the system: ( a ) tetragonal zirconia solid solution→monoclinic zirconia solid solution+cubic zirconia solid solution at 4.5 mol% Y2O3 and ∼490°C, ( b ) cubic zirconia solid solutiow→δ-phase Y4Zr3O12+hexagonalphase Y6ZrO11 at 45 mol% Y2O3 and ∼1325°±25°C, and ( c ) yttria C -type solid solution→wcubic zirconia solid solution+ hexagonal phase Y6ZrO11 at ∼72 mol% Y2O3 and 1650°±50°C. Two ordered phases were also found in the system, one at 40 mol% Y2O3 with ideal formula Y4Zr3O12, and another, a new hexagonal phase, at 75 mol% Y2O3 with formula Y6ZrO11. They decompose at 1375° and >1750°C into cubic zirconia solid solution and yttria C -type solid solution, respectively. The extent of the cubic zirconia and yttria C -type solid solution fields was also redetermined. By incorporating the known tetragonal-cubic zirconia transition temperature and the liquidus temperatures in the system, a new tentative phase diagram is given for the system ZrO2-Y2O3.  相似文献   

10.
The temperature dependence of bending strength, fracture toughness, and Young's modulus of composite materials fabricated in the ZrO2 (Y2O3)-Al2O3 system were examined. The addition of A1203 enhanced the high-temperature strength. Isostatically hot-pressed, 60 wt% ZrO2 (2 mol% Y2O3)/40 wt% Al2O3 exhibited an extremely high strength, 1000 MPa, at 1000°C.  相似文献   

11.
The microstructure of ZrO2 fine particles produced by a novel synthesis method at 450° and 950°C has been studied. The fundamentals of the synthesis method, which involves both chemical and diffusion phenomena, are presented. The method is based on mass transport through the gaseous phase between metallic zirconium and Fe2O3 powder. The mass-transporting chemical species are zirconium and iron chlorides. This article focuses on the microstructure and structure of ZrO2 particles formed by the reaction between gaseous ZrCl4 and solid Fe2O3, which is a relevant reaction step that occurs during the synthesis process. The resulting ZrO2 crystals grown on Fe2O3 particles have been analyzed using transmission electron microscopy. Microstructural characterization has been complemented by X-ray diffractometry analysis. Tetragonal-ZrO2 is produced at 450°C and monoclinic-ZrO2 single crystals are produced at 950°C.  相似文献   

12.
The phase relations in the systems MgO-Y2O3-ZrO2 and CaO-MgO-ZrO2 were established at 1220° and 1420°C. The system MgO-Y2O3-ZrO2 possesses a much-larger cubic ZrO2 solid solution phase field than the system CaO-MgO-ZrO2 at both temperatures. The ordered δ phase (Zr3Y4O12) was found to be stable in the system ZrO2-Y2O3 at 1220°C. Two ordered phases φ1 (CaZr4O9) and φ2 (Ca6Zr19O44) were stable at 1220°C in the system ZrO2-CaO. At 1420°C no ordered phase appears in either system, in agreement with the previously determined temperature limits of the stability for the δ, φ1, and φ2 phases. The existence of the compound Mg3YzO6 could not be confirmed.  相似文献   

13.
Electrical properties of single-crystal, cubic ZrO2 solid solutions containing 10.0, 12.5, and 15.0 mol% Gd2O3 were investigated. Electrical conductivities were measured by a two-terminal ac technique up to 831°C in air, and the observed data were compared with those reported for polycrystalline materials. Electrical conductivity and activation energy increased, and preexponential factor decreased with Gd2O3 content.  相似文献   

14.
The ionic conductivity of the hafnia-scandia, hafnia-yttria, and hafnia-rare earth solid solutions with high dopant concentrations of 8, 10, and 14 mol% was measured in air at 600° to 1050°C. Impedance spectroscopy was used to obtain lattice conductivity. A majority of the investigated samples exhibited linear Arrhenius plots of the lattice conductivity as a function of temperature. For all investigated dopant concentrations the ionic conductivity was shown to decrease as the dopant radius increased. The activation enthalpy for conduction was found to increase with dopant ionic radius. The fact that the highest ionic conductivity among 14-mol%-doped systems was obtained with HfO2─Sc2O3 suggested that the radius ratio approach should be used to predict the electrical conductivity behavior of HfO2─R2O3 systems. A qualitative model based on the Kilner's lattice parameter map does not seem to apply to these systems. For the three systems HfO2─Yb2O3, HfO2─Y2O3, and Hf2O3─Sm2O3 a conductivity maximum was observed near the dopant concentration of 10 mol%. Deep vacancy trapping is responsible for the decrease in the ionic conductivity at high dopant concentrations. Formation of microdomains of an ordered compound cannot explain the obtained results. A comparison between the ionic conductivities of doped HfO2 and ZrO2 systems indicated that the ionic conductivities of HfO2 systems are 1.5 to 2.2 times lower than the ionic conductivities of ZrO2 systems.  相似文献   

15.
In the ZrO2-Cr2O3 system, metastable t -ZrO2 solid solutions containing up to 11 mol% Cr2O3 crystallize at low temperatures from amorphous materials prepared by the hydrazine method. The lattice parameter c decreases linearly from 0.5149 to 0.5077 nm with increased Cr2O3 content, whereas the lattice parameter a is a constant value ( a = 0.5077 nm) regardless of the starting composition. At higher temperatures, transformation (decomposition) of the solid solutions proceeds in the following way: t (ss)→ t (ss) + m + Cr2O3→ m + Cr2O3. Above 11 mol% Cr2O3 addition, c-ZrO2 phases are formed in the presence of Cr2O3. The t -ZrO2 solid solution powders have been characterized for particle size, shape, and surface area. They consist of very fine particles (15–30 nm) showing thin platelike morphology. Dense ZrO2(3Y)-Cr2O3 composite ceramics (∼99.7% of theoretical) with an average grain size of 0.3 μm have been fabricated by hot isostatic pressing for 2 h at 1400°C and 196 MPa. Their fracture toughness increases with increased Cr2O3 content. The highest K Ic value of 9.5 MPa·;m1/2 is achieved in the composite ceramics containing 10 mol% Cr2O3.  相似文献   

16.
The phase equilibria in the zirconia-rich part of the system ZrO2−Yb2O3−Y2O3 were determined at 1200°, 1400°, and 1650°C. The stabilizing effects of Yb2O3 and Y2O3 were found to be quite similar with <10 mol% of either being necessary to fully stabilize the cubic fluorite-structure phase at 1200°C. The two binary ordered phases, Zr3Yb4O12 and Zr3Y4O12, are completely miscible at 1200°C. These were the only binary or ternary phases detected. The ionic conductivities of ternary specimens in this system were measured using the complex impedance analysis technique. For a given level of total dopant, the substitution of Yb2O3 for Y2O3 gives only minor increases in specimen conductivity.  相似文献   

17.
The effect of Y2O3 content on the flexure strength of melt-grown Al2O3–ZrO2 eutectics was studied in a temperature range of 25°–1427°C. The processing conditions were carefully controlled to obtain a constant microstructure independent of Y2O3 content. The rod microstructure was made up of alternating bands of fine and coarse dispersions of irregular ZrO2 platelets oriented along the growth axis and embedded in the continuous Al2O3 matrix. The highest flexure strength at ambient temperature was found in the material with 3 mol% Y2O3 in relation to ZrO2(Y2O3). Higher Y2O3 content did not substantially modify the mechanical response; however, materials with 0.5 mol% presented a significant degradation in the flexure strength because of the presence of large defects. They were nucleated at the Al2O3–ZrO2 interface during the martensitic transformation of ZrO2 on cooling and propagated into the Al2O3 matrix driven by the tensile residual stresses generated by the transformation. The material with 3 mol% Y2O3 retained 80% of the flexure strength at 1427°C, whereas the mechanical properties of the eutectic with 0.5 mol% Y2O3 dropped rapidly with temperature as a result of extensive microcracking.  相似文献   

18.
Mixtures of ultrafine monoclinic zirconia and aluminum hydroxide were prepared by adding NH4OH to hydrolyzed zirconia sols containing varied amounts of aluminum sulfate. The mixtures were heat-treated at 500° to 1300°C. The relative stability of monoclinic and tetragonal ZrO2 in these ultrafine particles was studied by X-ray diffractometry. Growth of ZrO2 crystallites at elevated temperatures was strongly inhibited by Al2O3 derived from aluminum hydroxide. The monoclinic-to-tetragonal phase transformation temperature was lowered to ∼500°C in the mixture containing 10 vol% Al2O3, and the tetragonal phase was retained on cooling to room temperature. This behavior may be explained on the basis of Garvie's hypothesis that the surface free energy of tetragonal ZrO2 is lower than that of the monoclinic form. With increasing A12O3 content, however, the transformation temperature gradually increased, although the growth of ZrO2 particles was inhibited; this was found to be affected by water vapor formed from aluminum hydroxide on heating. The presence of atmospheric water vapor elevates the transformation temperature for ultrafine ZrO2. The reverse tetragonal-to-monoclinic transformation is promoted by water vapor at lower temperatures. Accordingly, it was concluded that the monoclinic phase in fine ZrO2 particles was stabilized by the presence of water vapor, which probably decreases the surface energy.  相似文献   

19.
ZrO2–Al2O3 nanocrystalline powders have been synthesized by oxidizing ternary Zr2Al3C4 powders. The simultaneous oxidation of Al and Zr in Zr2Al3C4 results in homogeneous mixture of ZrO2 and Al2O3 at nanoscale. Bulk nano- and submicro-composites were prepared by hot-pressing as-oxidized powders at 1100°–1500°C. The composition and microstructure evolution during sintering was investigated by XRD, Raman spectroscopy, SEM, and TEM. The crystallite size of ZrO2 in the composites increased from 7.5 nm for as-oxidized powders to about 0.5 μm at 1500°C, while the tetragonal polymorph gradually converted to monolithic one with increasing crystallite size. The Al2O3 in the composites transformed from an amorphous phase in as oxidized powders to θ phase at 1100°C and α phase at higher temperatures. The hardness of the composite increased from 2.0 GPa at 1100°C to 13.5 GPa at 1400°C due to the increase of density.  相似文献   

20.
X-ray diffraction (XRD) and electron microscopy investigations have been performed on Sc2O3-stabilized ZrO2 as-sintered and after aging in air or in wet-forming gas at 850°C for 1000 h. Some tetragonal to monoclinic transformation had occurred in the near-surface regions of 4 mol% Sc2O3 samples after aging; the phase transition was more severe for samples aged in the forming gas ambient. A decrease of ∼20% in electrical conductivity accompanied the aging. In 6 mol% Sc2O3 samples, although no cubic to tetragonal transformation was detected, both the electrical conductivity and the activation energy for ionic conductivity decreased significantly during aging. Ten mole percent Sc2O3 samples did not show appreciable change in electrical conductivity due to aging, although some near-surface cubic to rhombohedral transformation did occur. Sharpening of the (400)t XRD peak of Sc2O3-stabilzed tetragonal ZrO2 accompanies the change(s) in the electrical conductivity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号