首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Various partial oxidation products were identified on the surface of TiO2 and an 8% SiO2–TiO2 binary catalyst used for the photocatalytic oxidation of gas-phase toluene. Using in situ FTIR spectroscopy, benzaldehyde and benzoic acid were identified on the surface of the deactivated photocatalysts. Additional GC/MS analysis of methanol-extracted surface species confirmed the presence of benzaldehyde and benzoic acid and detected small concentrations of benzyl alcohol. Apparently, benzaldehyde is the main partial oxidation product that is further oxidized to benzoic acid. Benzoic acid is strongly adsorbed on the surface of the catalyst. There seems to be a correlation between the accumulation of benzoic acid on the surface and catalyst deactivation. The presence of gas-phase water in the reactive mixture seems to retard the formation of benzoic acid.

The SiO2–TiO2 photocatalyst is more active and appears to deactivate slower than TiO2. This binary oxide is photocatalytically active even in the absence of gas-phase oxygen. It also seems to have a higher toluene adsorption capacity than TiO2. The acidity of the different oxides was examined using FTIR spectroscopy of adsorbed pyridine. The results indicate that no pure metal oxide displays Brønsted acidity but when SiO2 is cofumed with TiO2, Brønsted acidity of intermediate strength is generated. The generation of new surface sites may be responsible for the increased activity. The mechanism of this promotion effect is not clearly understood and further studies are required to elucidate it.  相似文献   


2.
To get the low temperature sulfur resistant V2O5/TiO2 catalysts quantum chemical calculation study was carried out. After selecting suitable promoters (Se, Sb, Cu, S, B, Bi, Pb and P), respective metal promoted V2O5/TiO2 catalysts were prepared by impregnation method and characterized by X-ray diffraction (XRD) and Brunner Emmett Teller surface area (BET-SA). Se, Sb, Cu, S promoted V2O5/TiO2 catalysts showed high catalytic activity for NH3 selective catalytic reduction (NH3-SCR) of NOx carried at temperatures between 150 and 400 °C. The conversion efficiency followed in the order of Se > Sb > S > V2O5/TiO2 > Cu but Se was excluded because of its high vapor pressure. An optimal 2 wt% ‘Sb’ loading was found over V2O5/TiO2 for maximum NOx conversion, which also showed high resistance to SO2 in presence of water when compared to other metal promoters. In situ electrical conductivity measurement was carried out for Sb(2%)/V2O5/TiO2 and compared with commercial W(10%)V2O5/TiO2 catalyst. High electrical conductivity difference (ΔG) for Sb(2%)/V2O5/TiO2 catalyst with temperature was observed. SO2 deactivation experiments were carried out for Sb(2%)/V2O5/TiO2 and W(10%)/V2O5/TiO2 at a temperature of 230 °C for 90 h, resulted Sb(2%)/V2O5/TiO2 was efficient catalyst. BET-SA, X-ray photoelectron spectroscopy (XPS) and carbon, hydrogen, nitrogen and sulfur (CHNS) elemental analysis of spent catalysts well proved the presence of high ammonium sulfate salts over W(10%)/V2O5/TiO2 than Sb(2%)/V2O5/TiO2 catalyst.  相似文献   

3.
A modified sol–gel process was used to prepare nanostructured TiO2 catalysts of controlled particle size (i.e. 6, 11, 16 and 20 nm). The influence of the TiO2 particle size in the gas phase photocatalytic oxidation of toluene was investigated under both dry and humid conditions. The main products of reaction were carbon dioxide and water, although small amounts of benzaldehyde were also detected. The smaller particle size (i.e. 6 nm) lead to higher conversion and complete mineralization of toluene into CO2 and H2O. Both electronic and structural effects (i.e. size and ensemble effects) are responsible for the excellent performance of 6 nm TiO2 catalyst for toluene photo-degradation. The structural differences between 6 nm TiO2 and larger catalysts were analyzed using EPR spectroscopy.  相似文献   

4.
Possible application of the TiO2/UV–VIS photocatalytic process in the destruction of nitrogen-containing malodorous compounds was evaluated. Pyridine (C5H5N), propylamine (C3H7NH2) and diethylamine (C4H10NH) were photodegraded in the presence and in the absence of oxygen. Degradation of nitrogen-containing organic compounds was confirmed by mass balance taking into consideration NH4+ and NO3 ions trapped at the TiO2 surface. Photocatalytic deactivation was observed in all cases. On-line mass spectrometry was used to identify byproducts in the gas phase formed during the degradation process. GC–MS analysis of the dichloromethane-extract of aqueous species leached from the surface of deactivated catalyst, as well as pre-concentration in a Tenax column were used to identify intermediates in the gas phase. These byproducts are considered to be the major ones responsible for deactivation of TiO2.  相似文献   

5.
Hydrotreating of Maya heavy crude oil over high specific surface area CoMo/TiO2–Al2O3 oxide supported catalysts was studied in an integral reactor close to industrial practice. Activity studies were carried out with Maya crude hydrodesulfurization (HDS), hydrodemetallization (HDM), hydrodenitrogenation (HDN), and hydrodeasphaltenization (HDAs) reactions. The effect of support composition, the method of TiO2 incorporation, and the catalyst deactivation are examined. Supported catalysts are characterized by BET specific surface area (SSA), pore volume (PV), pore size distribution (PSD), and atomic absorption. It has been found that sulfided catalysts showed a wide range of activity variation with TiO2 incorporation into the alumina, which confirmed that molybdenum sulfided active phases strongly depend on the nature of support. The pore diameter and nature of the active site for HDS, HDM, HDN, and HDAs account for the influence of the large reactant molecules restricted diffusion into the pore, and/or the decrease in the number of active sites due to the MoS2 phases buried with time-on-stream. The textural properties and hysteresis loop area of supported and spent catalysts indicated that catalysts were deactivated at the pore mouth due to the metal and carbon depositions. The atomic absorption results agreed well regarding the textural properties of spent catalysts. Thus, incorporation of TiO2 with γ-Al2O3 alters the nature of active metal interaction with support, which may facilitate the dispersion of active phases on the support surface. Therefore, the TiO2 counterpart plays a promoting role to HDS activity due to the favorable morphology of MoS2 phases and metal support interaction.  相似文献   

6.
Kinetic studies show deactivation of TiO2 catalysts during aqueous-phase and gas-phase photooxidation of trichloroethene (TCE). Temperature-programmed desorption (TPD) and X-ray photoelectron spectroscopy (XPS) were used to examine adsorbed species on TiO2 photocatalyst surfaces after reaction, and TPD was used to determine how reactants and products adsorb on the TiO2 surface. Used and deactivated catalysts were analyzed after participating in either aqueous-phase or gas-phase photooxidation of TCE. The XPS spectra showed little difference between the surface composition of fresh TiO2 and that of a deactivated catalyst from the aqueous-phase photoreactor. Chlorine was observed only on catalysts used in the gas-phase photocatalytic decomposition of TCE. Differences due to photoreaction were observed in TPD spectra of water, carbon monoxide, and carbon dioxide. Both the total amount desorbed and the temperature of desorption of carbon monoxide and carbon dioxide were quite different for used and deactivated catalysts from the two photoreactions. Apparently strongly bound species, such as carbonates, accumulated on the surface and formed carbon monoxide upon high-temperature decomposition. Small amounts of chlorinated compounds desorbed from the used and deactivated catalysts following gas-phase photoreaction. Dichloroacetyl chloride (DCAC), a reaction intermediate, can adsorb strongly on TiO2 and readily displaces TCE. Thermally decomposed DCAC reduces the number of available adsorption sites for DCAC and TCE. An interesting low-temperature oxygen desorption peak was observed from catalysts treated with H2O2, which improves catalytic activity. This feature indicates that H2O2 is stable on TiO2 at room temperature and decomposes at 420 K.  相似文献   

7.
Solar TiO2-photocatalysis was applied to waters from a natural wastewater treatment plant located in the Universidad de Las Palmas de Gran Canaria. Degussa P-25 TiO2 and its mixture with activated carbon (AC–TiO2) were used as catalysts. The presence of ozone and certain ions such as phosphates on the photocatalytic degradation of organic matter was also studied.

Disinfection experiments have provided interesting results, particularly when using the catalyst AC–TiO2 and ozone, since total disinfection was achieved in less than 60 min. No bacterial reappearance at 24 or 48 h was observed. Additionally, this catalyst gave important TOC and some ions concentrations reductions.

Studies in catalyst reuse revealed that the catalyst AC–TiO2 showed almost no deactivation.  相似文献   


8.
The deactivation of TiO2 Degussa P25 during the gas-phase photocatalytic oxidation of ethanol has been studied. Water vapor plays a clear competitive role for surface sites adsorption, thus hampering the ethanol photo-oxidation. Dark adsorption of ethanol on a fresh catalyst shows a Langmuirian behavior with the formation of a monolayer of adsorbate. Dark adsorption in a TiO2 surface that has been used in consecutive photocatalytic experiments of ethanol degradation gives non-Langmuirian isotherms, indicating the existence of noticeable changes of the catalyst surface structure. After several irradiations the catalyst activity decreases. Such deactivation has been investigated, observing that the rate constant of ethanol and acetaldehyde (its main degradation product) oxidation decreases with irradiation time. Several surface treatments have been studied in order to find suitable procedures for catalytic activity recovery, but regular decay of activity is always observed after every treatment.  相似文献   

9.
The effect of the modification of vanadia catalysts supported on TiO2/SiO2 by the oxides of Al, Mg and Te, and K2SO4on the selective oxidation of toluene in the vapor phase has been studied. The catalysts were prepared by successive impregnation and characterized by BET surface measurements, XRD, XPS, and TPR. Addition of the second component decreased specific activity in all cases, except Al, mainly due to the decrease of surface area. Intrinsic activity was increased with addition of Te and Al, and decreased by that of Mg, while K2SO4 had little effect. These differences could be explained by the observed changes in either vanadium surface dispersion or reducibility. Selectivity to benzaldehyde increased markedly with addition of Te or K2SO4, that caused the formation of new oxide phases, V3Ti6O17 and TiV2O6, in which vanadium is in a partially reduced state.  相似文献   

10.
The relationships between morphology and Lewis acid and base character of surface sites of two types of titania powders (TiO2 P25 and TiO2 Merck) were studied by HRTEM and FTIR spectroscopy of adsorbed molecules. Electron micrographs revealed that TiO2 P25 microcrystals have a prismatic shape, mainly exposing (0 0 1) and (0 1 0) surface planes. TiO2 Merck powder, which exhibits a significantly lower specific surface area, appeared constituted by large roundish microcrystals. FTIR spectra of adsorbed CO indicated that Ti4+ ions exposed on (0 0 1) and (0 1 0) faces of TiO2 P25 particles are Lewis acid centres significantly stronger than those present on the surface of TiO2 Merck microcrystals. As in both cases the exposed cations are coordinated to five oxygen anions, the observed differences in Lewis acidity are ascribed to some difference in the geometric arrangement of the O2− ligands. Such difference in structure affects the basicity of these centres also. In fact, a fraction of O2− ions on the surface of TiO2 P25 behave as basic centres toward CO2 linearly adsorbed on neighbour Ti4+ centres, and then Lewis acid–base pairs can be recognised. By contrast, no basic activity towards CO2 was detected for the TiO2 Merck sample.

The two titania powders exhibited different chemical behaviour in condition of high surface hydration also. Hydroxyl groups on the surface of hydrated TiO2 P25 are able to transform benzaldehyde molecules in hemiacetalic-like species, whereas C6H5CHO molecules are only weakly perturbed by interaction with the OH groups on TiO2 Merck particles. This feature could be related to the different photocatalytic behaviour in the oxidation of toluene in gas phase, where benzaldehyde was found as a relevant intermediate species.  相似文献   


11.
Seng Sing Tan  Linda Zou  Eric Hu   《Catalysis Today》2006,115(1-4):269-273
It has been shown that CO2 could be transformed into hydrocarbons when it is in contact with water vapour and catalysts under UV irradiation. This paper presents an experimental set-up to study the process employing a new approach of heterogeneous photocatalysis using pellet form of catalyst instead of immobilized catalysts on solid substrates. In the experiment, CO2 mixed with water vapour in saturation state was discharged into a quartz reactor containing porous TiO2 pellets and illuminated by various UV lamps of different wavelengths for 48 h continuously. The gaseous products extracted were identified using gas chromatography. The results confirmed that CO2 could be reformed in the presence of water vapour and TiO2 pellets into CH4 under continuous UV irradiation at room conditions. It showed that when UVC (253.7 nm) light was used, total yield of methane was approximately 200 ppm which was a fairly good reduction yield as compared to those obtained from the processes using immobilized catalysts through thin-film technique and anchoring method. CO and H2 were also detected. Switching from UVC to UVA (365 nm) resulted in significant decrease in the product yields. The pellet form of catalyst has been found to be attractive for use in further research on photocatalytic reduction of CO2.  相似文献   

12.
Various vanadium-containing catalysts were searched for the commercial application in the selective oxidation of H2S to elemental sulfur at low temperatures (less than 250°C) in the presence of excess (more than 35 vol.%) water. In the test of binary oxides, it was found that TiVOx was the only catalyst that could sustain its activity without deactivation at 230°C. The best catalytic activity (85–90% sulfur yield) was obtained when VOx/TiO2 was incorporated with other metals such as Fe, Cr and Mo. Reaction occurred via redox mechanism and the reoxidation of reduced vanadium was the rate-limiting step. A long-term deactivation observed during the reaction was due to slower reoxidation of reduced vanadium by oxygen than the reduction by H2S. Catalytic activities of VOx/SiO2, VOx/TiO2 and V–Fe–Cr–Mo–Ox/TiO2 were well correlated with their redox properties that were observed by TPR/TPO and XPS measurements.  相似文献   

13.
Phenol was oxidized in supercritical water at 380–450°C and 219–300 atm, using CuO/Al2O3 as a catalyst in a packed-bed flow reactor. The CuO catalyst has the desired effects of accelerating the phenol disappearance and CO2 formation rates relative to non-catalytic supercritical water oxidation (SCWO). It also simultaneously reduced the yield of undesired phenol dimers at a given phenol conversion. The rates of phenol disappearance and CO2 formation are sensitive to the phenol and O2 concentrations, but insensitive to the water density. A dual-site Langmuir–Hinshelwood–Hougen–Watson rate law used previously for catalytic SCWO of phenol over other transition metal oxides and the Mars–van Krevelen rate law can correlate the catalytic kinetics for phenol disappearance over CuO. The supported CuO catalyst exhibited a higher activity, on a mass of catalyst basis, for phenol disappearance and CO2 formation than did bulk MnO2 or bulk TiO2. The CuO catalyst had the lowest activity, however, when expressed on the basis of fresh catalyst surface area. The CuO catalyst exhibited some initial deactivation, but otherwise maintained its activity throughout 100 h of continuous use. Both Cu and Al were detected in the reactor effluent, however, which indicates the dissolution or erosion of the catalyst at reaction conditions.  相似文献   

14.
Combined effect of H2O and SO2 on V2O5/AC the activity of catalyst for selective catalytic reduction (SCR) of NO with NH3 at lower temperatures was studied. In the absence of SO2, H2O inhibits the catalytic activity, which may be attributed to competitive adsorption of H2O and reactants (NO and/or NH3). Although SO2 promotes the SCR activity of the V2O5/AC catalyst in the absence of H2O, it speeds the deactivation of the catalyst in the presence of H2O. The dual effect of SO2 is attributed to the SO42− formed on the catalyst surface, which stays as ammonium-sulfate salts on the catalyst surface. In the absence of H2O, a small amount of ammonium-sulfate salts deposits on the surface of the catalyst, which promote the SCR activity; in the presence of H2O, however, the deposition rate of ammonium-sulfate salts is much greater, which results in blocking of the catalyst pores and deactivates the catalyst. Decreasing V2O5 loading decreases the deactivation rate of the catalyst. The catalyst can be used stably at a space velocity of 9000 h−1 and temperature of 250 °C.  相似文献   

15.
G. Col  n  M. C. Hidalgo  J. A. Naví  o 《Catalysis Today》2002,76(2-4):91-101
TiO2 nanoparticles have been prepared by a novel alkoxide sol–gel precipitation. The presence of active carbon in different percentages could act as an interesting template. Upon calcination, carbon is eliminated leaving surface features significantly different from TiO2 prepared in the absence of carbon. Wide surface and structural characterisation of samples have been carried out. Correlations with carbon percentage is pointed out from this characterisation. Interesting spherical aggregates of nanosized TiO2 are observed from TEM images probably stabilised by the presence of carbon. Physicochemical correlations made will be very useful in further application of these TiO2 to be used as potential high surface area photocatalyst.  相似文献   

16.
The effect of tungsten and barium on the thermal stability of V2O5/TiO2 catalyst for NO reduction by NH3 was examined over a fixed bed flow reactor system. The activity of V2O5/sulfated TiO2 catalyst gradually decreased with respect to the thermal aging time at 600 °C. The addition of tungsten to the catalyst surface significantly enhanced the thermal stability of V2O5 catalyst supported on sulfated TiO2. On the basis of Raman and XRD measurements, the tungsten on the catalyst surface was identified as suppressing the progressive transformation of monomeric vanadyl species into crystalline V2O5 and of anatase into rutile phase of TiO2. However, the NO removal activity of V2O5/sulfated TiO2 catalyst including barium markedly decreased after a short aging time, 6 h at 600 °C. This may be due to the transformation of vanadium species to inactive V–O–Ba compound by the interaction with BaO which was formed by the decomposition of BaSO4 on the catalyst surface at high reaction temperature of 600 °C. The addition of SO2 to the feed gas stream could partly restore the NO removal activity of thermally aged V2O5/sulfated TiO2 catalyst containing barium.  相似文献   

17.
A lost of culturability of bacteria Escherichia coli K12 was observed after exposition to a solar simulator (UV–vis) in a laboratory batch photoreactor. The bacterial inactivation reactions have been carried out using titanium dioxide (TiO2) P25 Degussa and FeCl3 as catalysts. At the starting of the treatment, the suspensions were at their “natural” pH. An increase in the efficiency in the water disinfection was obtained when some advanced oxidation processes such as UV–vis/TiO2, UV–vis/TiO2/H2O2, UV–vis/Fe3+/H2O2, UV–vis/H2O2 were applied. The presence of H2O2 accelerates the rate of disinfection via TiO2. The addition of Fe3+ (0.3 mg/l) to photocatalytic system decreases the time required for total disinfection (<1 CFU/ml), for TiO2 concentrations ranging between 0.05 and 0.5 g/l. At TiO2 concentrations higher than 0.5 g/l the addition of Fe3+ does not significantly increase the disinfection rate. The systems: Fenton (H2O2/Fe3+/dark), H2O2/dark, H2O2/TiO2/dark showed low disinfection rate. The effective disinfection time (EDT24) was reached after 60 and 30 min of illumination for the Fe3+ and TiO2 photoassisted systems, respectively. EDT24 was not reached for the system in the absence of catalyst (UV–vis). The effect on the bacterial inactivation of different mixture of chemical substance added to natural water was studied.  相似文献   

18.
Deactivation kinetics of V/Ti-oxide in toluene partial oxidation   总被引:2,自引:0,他引:2  
Deactivation kinetics of a V/Ti-oxide catalyst was studied in partial oxidation of toluene to benzaldehyde (BA) and benzoic acid (BAc) at 523–573 K. The catalyst consisted of 0.37 monolayer of VOx species and after oxidative pre-treatment contained isolated monomeric and polymeric metavanadate-like vanadia species under dehydrated conditions as was shown by FT Raman spectroscopy. Under the reaction conditions via in situ DRIFTS fast formation of adsorbed carboxylate and benzoate species was observed accompanied by disappearance of the band of the monomeric species (2038 cm−1) (polymeric species were not controlled). Slow accumulation of maleic anhydride, coupling products and/or BAc on the surface caused deactivation of the catalyst during the reaction. Temperature-programmed oxidation (TPO) after the reaction showed formation of high amounts of CO, CO2 and water. Rate constants for the steps of the toluene oxidation were derived via mathematical modelling of reaction kinetics at low conversion and constant oxygen/toluene ratio of 20:1. The model allows predicting deactivation dynamics, steady-state rates and selectivity. The highest rate constant was found for the transformation of BA into BAc explaining a low BA yield in the reaction.  相似文献   

19.
The activity and selectivity of rhenium promoted cobalt Fischer–Tropsch catalysts supported on Al2O3, TiO2 and SiO2 have been studied in a fixed-bed reactor at 483 K and 20 bar. Exposure of the catalysts to water added to the feed deactivates the Al2O3 supported catalyst, while the activity of the TiO2 and SiO2 supported catalysts increased. However, at high concentrations of water both the SiO2 and TiO2 supported catalyst deactivated. Common for all catalysts was an increase in C5+ selectivity and a decrease in the CH4 selectivity by increasing the water partial pressure. The catalysts have been characterized by scanning transmission electron microscope (STEM), BET, H2 chemisorption and X-ray diffraction (XRD).  相似文献   

20.
Anthraquinonic acid green 25 (AG 25) removal was investigated by plasmachemistry using non-thermal gliding arc at atmospheric pressure. The gaseous species formed in the discharge, and especially OH radicals, induce strong oxidizing effects in the target solution. The removal of the dye was carried out in the absence and presence of TiO2 as photocatalyst. The decolourization of AG 25 was followed by UV–vis spectrometry (at 643 nm), while the degradation was followed by COD measurements. The effects of operating variables such as initial concentration of AG 25 and catalyst concentration were investigated. Experiments were carried out to optimise the amount of TiO2. The results showed that maximum degradation was attained for 2 g L−1 TiO2 concentration. At this optimum concentration, the dye (80 μM) was totally decolourized within 15 min of plasma-treatment time, and 93% removal of initial COD was attained after a 180-min plasma-treatment time. In the absence of catalyst, colour removal was 46% after 15 min, while COD abatement reached 84% after 180 min. The extent of degradation decreased with initial concentration and the time required for complete degradation increased. In all cases, the plasma-treated samples in the presence or absence of catalyst were found to follow pseudo-first order reaction kinetics. The TiO2-mediated plasmachemical process showed potential application for the treatment of dye solutions, resulting in the mineralization of the dye confirmed by sulfate ion formation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号