首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
为控制某型号变流器噪声,文章对该变流器产品开展柜体内气动噪声仿真研究,并与试验结果对标,验证仿真方法可靠性,并协助进一步诊断噪声问题。仿真研究结果表明:机柜内部气动噪声源主要集中在风机附近区域,由风机叶片旋转引起的离散声源。风机噪声频谱在叶片通过频率及其他谐频出现明显峰值。文中对不同降噪方案进行仿真分析,对比了不同材料及不同厚度方案的降噪效果,并通过试验进行了验证。结果表明,使用吸声材料方案使出口总声压级降低 12.2 dB(A)。仿真分析法的降噪优化量与试验结果相近,该方法可应用于后续新产品的降噪设计。  相似文献   

2.
采用噪声与振动测试分析系统对地铁车辆车内噪声进行测试,分析车内同一工况不同位置噪声分布规律,进行不同速度下各测点声压级比较。通过分析得知,车内主要噪声源为轮轨噪声及车辆附属设备噪声。近地板、通过台和车门处噪声比其他测点处声压级高2 d B(A)~3 d B(A);近车顶处噪声主要来自空调机组机械振动产生的噪声和送风口空气动力噪声;当频率在500 Hz以上的中高频范围内,声压级随速度增加而增加;车辆运行线路为道岔时,车内噪声值较大,比通过直线时噪声值高达15 d B(A),比通过曲线时噪声值高达4 d B(A)。该研究结果对地铁车辆降噪设计具有一定的参考价值。  相似文献   

3.
以广州地铁一号线A1型车为对象,运用多通道噪声测试与分析系统,对正线运行车辆客室内噪声进行测试分析,获得一号线各区间客室噪声变化数据,结果表明:当曲线半径小于600 m时,客室噪声主频带位于630 Hz和1 000 Hz之间,随着曲线半径的增大,各频段噪声分布趋于均匀,主频逐渐不明显;列车运行速度对客室内中、高频噪声影响较大。噪声测试分析为车辆及线路的设计和维护提供参考数据。  相似文献   

4.
汽车外表面气动噪声特性分析   总被引:1,自引:0,他引:1       下载免费PDF全文
以荣威750为研究对象,通过声学风洞实验手段对车辆后视镜表面、侧窗表面及其附近流场,以及外场的气动噪声特性进行测试分析;在对数值计算结果验证分析之后,通过数值计算手段以流场脉动压力标准差为评价指标并结合速度场特征,分析车辆表面的压力脉动特性及其产生的原因,在此基础上对车辆表面的噪声大小和分布以及频率特性进行计算分析。研究表明车辆的气动噪声主要能量集中在中低频,频带较宽,不同部位特性差异较大;表面压力脉动是表面气动噪声产生的根本原因,压力脉动大的地方气动噪声亦大;气动噪声大的位置是发生气流分离,湍流运动比较剧烈的区域。就该款车而言,气动噪声主要出现在汽车头部上方、前后挡风玻璃边沿、车顶、A柱、侧窗、后视镜以及车尾和轮胎部分位置处。  相似文献   

5.
为了识别地铁车辆辅助变流器在不同运行工况下的气动噪声和电磁噪声特征以及贡献,通过试验方法对变流柜整机以及其内部2个主要的噪声源部件单体(风机和变压器)进行噪声测试.通过单体测试,分别得到风机和变压器在不同工况下的峰值频率以及对应幅值,为变流柜下一步降噪提供理论依据.  相似文献   

6.
以某型号扫路车专用风机气动噪声特性为研究对象,运用Lighthill声比拟理论和计算流体动力学技术对扫路车专用风机的非定常流场和气动声场进行数值研究,获得专用风机声功率级分布和气动噪声频谱特性。计算结果表明:扫路车专用风机的噪声源主要分布在叶片的吸力面和蜗舌区域;扫路车专用风机的噪声主要为低频噪声,吸力面的压力脉动是低频噪声的主要来源,离散噪声在气动噪声中所占的比重较大;叶片及蜗舌的设计是扫路车专用风机气动降噪需重点考虑的因素。  相似文献   

7.
气动噪声数值计算方法的比较与应用   总被引:1,自引:0,他引:1  
当前气动噪声问题已日趋普遍和突出。虽然自Lighthill开创气动声学已有半个多世纪,但是由于气动声学方程的复杂性,因此在很长一段时间内都无法实现气动噪声的准确计算。计算流体力学和声学计算方法的成熟,数值计算正在成为解决气动噪声问题的主要工具。从气动声学基本理论出发,对现有的三种气动噪声数值计算方法进行介绍,分析这三种方法的适用性,并通过应用实例说明它们各自的求解过程和优缺点。由此可对气动噪声的预测提供一定的参考依据。  相似文献   

8.
地铁车内噪声特性   总被引:2,自引:0,他引:2  
对地铁车辆在静止及运行情况下进行车内噪声测试。测点布置在车体中央、风挡及转向架上方距地板面不同高度处。在静止情况下,空调送风口处噪声值为77.8 dB(A)。车辆运行分为隧道内和高架上两种情况,隧道内运行时,车内相应点处的噪声值比高架上高1.0-5.9 dB(A)。车辆在运行过程中对车内噪声影响较大的是轮轨噪声,车辆附属设备影响较小。车辆的密封性对车内噪声的分布有较大的影响,应提高车门、风挡的密封性。  相似文献   

9.
气动凿岩机噪声声源的分析   总被引:2,自引:0,他引:2  
对气动凿岩机产生的噪声声源进行了全面的分析研究,介绍了各声源的特性及测试方法。将气动凿岩机的冲击噪声和回转噪声作为一种主要噪声声源。为气动凿岩机噪声治理提供了依据。  相似文献   

10.
研究借助气动-声学风洞试验平台,首先针对某高速列车的1:8缩尺比例的三车编组模型建立了气动噪声试验方法和突显不同的噪声源的模型处理方法,并结合流场外自由场传声器和传声器阵列的测量结果,分析了模型上的主要噪声源特性及对整个模型的贡献量大小。研究表明:转向架和受电弓噪声是模型的最主要噪声源,其次是车连接部位间隙,再次是鼻尖和排障器,最后是尾车,同时,并给出了这些噪声源的特性,这对于认识高速列车气动噪声和改善设计有重要的参考价值。研究也说明所提出的试验研究方法是一种研究高速列车气动噪声较为有效地方法。  相似文献   

11.
由于缺少发动机噪声的覆盖,新能源汽车空调鼓风机产生的气动噪声成为影响乘车舒适性的重要噪声源,主要针对某新能源汽车空调鼓风机系统进行气动噪声特性分析和优化,以适应更加严苛的噪声控制要求.采用AN-SYS数值模拟软件和半消声实验室,通过对原始叶轮模型流场和声场的研究分析复杂的轮毂、叶片、气流和结构部件周期性相互作用产生的气...  相似文献   

12.
燃料电池汽车(FCV)的动力系统及噪声特性与传统汽车相比有着很大差异,其中空气辅助系统已成为主要的噪声源。虽然有源噪声控制(ANC)是近年来的研究热点;但是,由于噪声源与环境的时变性,对空辅系统的中低频段噪声更有效的对策是使用自适应有源噪声控制技术(AANC)。在归纳总结有源噪声控制技术的发展进程及基本原理的基础上,阐述近年来有源噪声控制的研究现状,并重点分析关注自适应算法的研究进展;由此对自适应有源噪声控制在燃料电池汽车空辅系统减振降噪方面的应用前景进行预测和展望。  相似文献   

13.
利用频谱分析和模态分析技术分析常用转速下车内噪声成分及车身各部分振动情况,确定阻尼片粘贴位置,并将条形阻尼结构应用于车内噪声控制。试验表明条形阻尼结构能有效抑制车辆行驶中的车身振动,降低车内噪声。  相似文献   

14.
首先针对某型客车建立了汽车车身结构的有限元模型,对建立的模型进行了有限元模态分析;通过比较计算得出的模态数据和实车试验得出的模态数据,验证了该车身结构有限元模型的正确性。基于模态分析的结果,提出了车身减振降噪的改进方案, 在车身模型上对结构进行了改进并且对改进前后的车内噪声进行分析。分析结果表明,该改进方案能有效降低车内的低频噪声。  相似文献   

15.
粘弹性阻尼材料降低列车车内噪声的试验研究   总被引:2,自引:1,他引:1  
三种新型粘弹性阻尼材料应用于铁路车辆降低车内噪声.列车运行时,整个车厢和单个包间内噪声测试结果表明:车厢内噪声随空间分布不均匀,噪声主要能量集中在25Hz~160Hz低频范围;阻尼材料能显著地降低车内噪声,改性沥青和水性涂料比丁基橡胶降噪效果更好;随着车速的增加,车内噪声的降噪总值增加,阻尼材料的低频降噪能力减小.车内噪声特性响度计算结果表明,100Hz~160Hz上的频率成分对总响度起主要作用,阻尼材料在这个频率范围上降噪效果显著.增加车厢侧墙阻尼板高度,可减小车内噪声.  相似文献   

16.
针对国内某地铁线路的车内噪声超标问题,进行了现场车内噪声和线路钢轨波磨的现场测量。测试发现,列车经过波磨区间的车内噪声高达90.3 dBA,而对该区间的钢轨打磨后,车内噪声可以降低11.6 dBA。对车内噪声进行频谱分析后发现车内噪声主频均在400-700 Hz,这与车辆通过区间轨道的波长为30-50 mm的波磨通过频率基本一致。对比分析发现波长160-200 mm波磨对车内噪声的影响要远低于短波长波磨。因此,短波长波磨是造成车内噪声异常的主要原因。通过对大量试验数据的统计分析,得出了车内噪声与30-50 mm短波长波磨粗糙度水平的关系曲线,并由该曲线提出了针对30-50 mm短波长波磨的打磨限值。  相似文献   

17.
针对国内某地铁线路的车内噪声超标问题,进行了现场车内噪声和线路钢轨波磨的现场测量。测试发现,列车经过波磨区间的车内噪声高达90.3 dBA,而对该区间的钢轨打磨后,车内噪声可以降低11.6 dBA。对车内噪声进行频谱分析后发现车内噪声主频均在400-700 Hz,这与车辆通过区间轨道的波长为30-50 mm的波磨通过频率基本一致。对比分析发现波长160-200 mm波磨对车内噪声的影响要远低于短波长波磨。因此,短波长波磨是造成车内噪声异常的主要原因。通过对大量试验数据的统计分析,得出了车内噪声与30-50 mm短波长波磨粗糙度水平的关系曲线,并由该曲线提出了针对30-50 mm短波长波磨的打磨限值。  相似文献   

18.
面向空气动力学优化的电动汽车造型设计研究   总被引:1,自引:0,他引:1  
张晨铭  李彦龙  王东  徐飞 《包装工程》2012,33(16):43-46,66
从汽车造型设计的比例、容积、曲面、细节4个层级出发,逐层分析了未来具有优秀空气动力学性能的电动汽车在比例、容积、曲面、细节中应该具有的特点。提出了要设计未来具有优秀空气动力学性能的电动汽车应该打破过去的"汽车式"的比例容积安排,改变过去"大功率高能耗"的曲面语言,转而探索符合电动汽车设计理念的环保、高效、自然的曲面语言,并且在细节上辅以与电动汽车比例、容积和曲面统一的、合理体现电动汽车技术特点的细节。  相似文献   

19.
本文针对减振轨道结构车内振动与噪声比较明显的现象,对国内某一地铁线路不同轨道结构下的车内振动与噪声进行了现场测量与分析。试验结果表明,Z计权方式下的钢弹簧浮置板轨道减振结构的车内垂向与横向振动分别比普通轨道结构高7.46dB和0.57dB,A计权方式下的车内噪声相比增加9.71dB;GJ-32扣件型减振轨道结构的车内垂向与横向振动分别比普通轨道结构高4.94dB和2.88 dB,车内噪声增加8.71dB。通过对试验数据的倍频程和FFT的分析发现,车内的低频噪声主要是出现在钢弹簧轨道结构上,400Hz~700Hz的中频噪声主要出现在GJ-32型减振扣件轨道结构上。由此得出结论,减振轨道结构是导致车内振动与噪声异常的一个重要因素。  相似文献   

20.
车用交流发电机气动噪声试验研究   总被引:1,自引:0,他引:1  
针对某型汽车交流发电机在高速段(6 000 r/min以上)噪声源以及各主要阶次对总噪声的贡献量问题,对交流发电机进行噪声测试分析。通过阶次分析得出气动噪声的频率特性,采用交流发电机有无前、后扇叶分别单独运转等试验方法确定各阶次噪声的具体来源以及前后扇叶对主要单阶次贡献量的大小。得到前后扇叶为该型交流发电机的气动噪声声源,第6、8、10、12、18等阶次为该型交流发电机的主要气动噪声成分;前扇叶对12、18阶次噪声贡献明显比后扇叶大,后扇叶对6、8、10阶次噪声的贡献较前扇叶大。该方法对汽车交流发电机的气动性能和高转速下噪声的改进提供一种切实可行的依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号