共查询到20条相似文献,搜索用时 0 毫秒
1.
当滚动轴承出现早期故障时,其故障特征信号微弱,且环境噪声较大,因此其早期故障特征一般难以提取。针对上述问题,提出基于LMD与MCKD的滚动轴承早期故障诊断方法。为了克服局部均值分解(LMD)在早期故障诊断中易受噪声影响的不足,该方法对其包含故障信号大部分能量的前4 个乘积函数(product function, PF)分量进行最大相关峭度解卷积(MCKD),突出轴承信号中淹没在噪声信号中的周期脉冲成分,最后再对其进行包络解调,便可得到轴承故障特征频率,进而对滚动轴承早期微弱故障进行诊断。实验信号验证了该方法的有效性。 相似文献
2.
针对滚动轴承的故障振动信号的非平稳特性,提出了一种基于局部均值分解(Local mean decomposition,简称LMD)和神经网络的滚动轴承诊断方法。该方法首先对信号进行局部均值分解,将其分解为若干个PF分量(Product function,简称PF)之和,再选取包含主要故障信息的PF分量进行进一步分析,从这些分量中提取时域统计量和能量等特征参数作为神经网络的输入参数来识别滚动轴承的故障类别。通过对滚动轴承正常状态,内圈故障和外圈故障的分析,表明了基于LMD与神经网络的诊断方法比基于小波包分析与神经网络的诊断方法有更高的故障识别率,同时也证明了该方法可以准确、有效地对滚动轴承的工作状态和故障类型进行分类。 相似文献
3.
针对滚动轴承早期故障被淹没在噪声信号下特征信号微弱,故障特征难以提取的问题,将最大相关峭度解卷积(maximum correlated kurtosis deconvolution,MCKD)应用于滚动轴承早期故障诊断。并针对MCKD参数滤波器长度及移位数需人为选择的问题,提出一种基于参数优化的最大相关峭度解卷积的滚动轴承早期故障诊断方法。首先,针对轴承工作的实际工况讨论了最优移位数;然后,以经解卷积后信号的形态能量熵作为评价函数,利用网格搜索法对滤波器长度进行寻优;最后,利用参数优化后的MCKD算法增强信号中的冲击成分,通过包络谱判断轴承故障类型。实验表明,该方法可有效的增强轴承信号中微弱的故障特征成分,实现滚动轴承早期故障的诊断。 相似文献
4.
《振动与冲击》2019,(24)
滚动轴承早期故障信号通常呈现出非平稳性、弱调制性、故障特征成分不突出以及背景噪声强烈等特点,有效提取轴承故障特征比较困难,因此难以准确判断轴承的故障位置。针对这一问题,提出了基于自相关分析与最大相关峭度解卷积(MCKD)算法的滚动轴承故障诊断方法:①利用有偏估计自相关分析方法对轴承信号作初步分析,抑制信号中噪声成分;利用MCKD算法对所得信号作进一步分析,突出信号中的原始冲击成分并进一步去噪,使得信号的信噪比进一步提高;③对信号进行包络谱分析,通过包络谱中的主导频率成分与滚动轴承各元件的故障特征频率对比从而判断轴承的故障位置。仿真数据和实测数据分析结果证明,所提方法能够有效提取故障信号中的特征信息,具有一定的有效性。 相似文献
5.
由于干扰噪声较强,共振稀疏分解在滚动轴承早期故障阶段并不能有效提取瞬态冲击成分。针对此问题提出基于最大相关峭度解卷积(Maxim Correlated Kurtosis Deconvolution,MCKD)和共振稀疏分解(Resonance Sparse Signal Decomposition,RSSD)相结合的故障特征提取方法。该方法首先利用MCKD对振动冲击信号进行处理,有效降噪并突出故障信号尖脉冲,然后使用共振稀疏分解将信号分解成包含谐波信号的高共振分量与包含瞬态冲击信号的低共振分量,最后利用包络功率谱根据低共振分量提取故障特征频率。通过仿真和试验验证了该方法可以准确提取故障特征频率,凸显故障特征。 相似文献
6.
局部均值分解(Local mean decomposition,简称LMD)方法是一种新的自适应时频分析方法,并成功运用于滚动轴承故障诊断中,但对噪声比较敏感。为消除噪声对诊断结果的影响,提出了一种小波包降噪与LMD相结合的滚动轴承故障诊断方法。该方法首先利用小波包去除信号中的噪声,然后,进行LMD分解,并将分解后PF分量与分解前信号的相关系数作为判断标准,剔除多余低频PF分量,最后,选取有效PF集进行功率谱分析,提取故障特征。通过仿真数据和真实滚动轴承数据的故障诊断实验,其结果验证了本文方法的有效性。 相似文献
7.
《中国测试》2016,(6):90-94
工程实际中测得的滚动轴承信号往往含有大量的噪声,这使得轴承故障特征淹没在噪声中难以被提取。针对这一问题,提出一种基于随机噪声统计特性与局部均值分解(local mean decomposition,LMD)理论相结合的滚动轴承故障诊断方法。首先,利用LMD将原信号分解,得到若干乘积函数(production function,PF)分量;其次,将第一阶PF分量随机排序,与剩余PF分量相加;然后,对第2步进行P次循环,求平均;最后,把第3步得到的信号作为原信号,重复第1、2步Q次,对得到的信号进行频谱分析,提取故障特征。通过对仿真信号和实验台轴承实验信号进行分析研究表明,该方法可准确诊断滚动轴承元件故障,具有有效性。 相似文献
8.
9.
10.
11.
12.
13.
提出一种基于集合经验模态分解的滚动轴承故障诊断方法。首先目标信号中加入一定分量的白噪声信号;然后再进行经验模态分解;并且多次重复以上两步,但每次加入不同的白噪声信号;取多次所得的对应内禀模态函数的平均值作为最终的内禀模态函数。最后对内禀模态函数进行Hilbert变换,得到Hilbert谱和Hilbert边际谱,通过谱分析识别滚动轴承的运行状态和故障类型。实验结果显示所提方法的有效性。 相似文献
14.
针对传统诊断方法难以有效提取故障特征的问题,提出了一种基于格拉姆角场(GAF)与TL-ResNeXt相结合的故障诊断方法。首先利用GAF对原始振动信号编码为时间序列相关的二维特征图;再将这些特征图输入到层级更深的分组残差网络ResNeXt中进行自动的识别、分类;模型训练的同时,在网络的最后一层结合了迁移学习(TL)模块以加快模型特征提取能力、快速的进行学习。为了验证该方法的有效性,利用凯斯西储大学轴承数据对比了其他方法,结果表明该方法表现最优。且在轧机模拟实验平台上收集的轴承故障数据表明,该方法在改变工况时同样具有好的泛化性与识别能力。 相似文献
15.
针对变分模态分解方法(Variation mode decomposition, VMD)在提取滚动轴承振动信号的故障特征频率时受参数设置影响及敏感模态分量的选取问题,构建一种基于海洋捕食者算法(Marine Predator Algorithm,MPA)优化变分模态分解的滚动轴承故障诊断方法。首先,利用以包络熵为适应度函数的海洋捕食者算法对变分模态分解算法的模态个数K和二次惩罚因子α进行自适应选定;其次,使用获得的最佳参数组合对故障振动信号进行变分模态分解,得到多个本征模态分量(Intrinsic Mode Function,IMF);最后,计算各模态分量的平方包络基尼系数(Squared Envelope Gini Index,SEGI),选择系数最大的模态作为最优IMF并进行包络分析,提取相应的故障特征频率。通过公开数据集和实验数据验证表明该方法可解决VMD受参数设置影响的问题,成功诊断轴承故障。且相比于峭度和相关系数指标,平方包络基尼系数指标在筛选最优IMF具备更佳的准确性和鲁棒性。 相似文献
16.
滚动轴承经常工作于多工况、变工况条件下,加之各振源间相互耦合、非线性强等特点,极易诱发系统中轴承零部件的故障.因此,设计滚动轴承故障诊断软件是十分必要的.本文基于LabVIEW设计了滚动轴承的故障诊断界面,主要分为数据采集界面、时域界面、频域界面、智能诊断界面,能够实现对滚动轴承的离线诊断和在线诊断. 相似文献
17.
为了提高滚动轴承故障诊断的准确性,提出一种变分模态分解( Variational Mode Decomposition,VMD )、改进粗粒化多尺度散布熵( Improved Coarse-grained Multi-scale Dispersion Entropy,IMDE )和概率神经网络(Probabilistic Neural Network,PNN )相结合的滚动轴承故障诊断方法。首先对振动信号进行VMD处理,根据互相关系数准则筛选最佳模态分量,突显振动信号的故障特性;然后针对多尺度散布熵(Multi-scale Dispersion Entropy,MDE)不稳定的缺点,对MDE的粗粒化过程进行改进,提出IMDE的非线性分析方法。模拟信号分析结果表明,相比于MDE方法,IMDE方法降低了熵值波动,提高了熵值稳定性。将两种方法运用于实际滚动轴承实验数据,发现相比于MDE,IMDE熵值曲线更平滑稳定,不同滚动轴承状态下的IMDE熵值曲线区分更加明显。最后采用PNN对提取的特征进行识别,与MPE-PNN,MDE-PNN以及VMD-MDE-PNN方法相比,所提的MD-IMDE-PNN方法能精确地识别滚动轴承的故障类型,且识别率更高。 相似文献
18.
19.
局域均值分解(Local Mean Decomposition, LMD)是近年出现的一种新的时频分析方法,在故障诊断领域的应用日益广泛。本文提出一种改进的局域均值分解和小波降噪结合的降噪方法,并与小波变换的信号降噪方法、基于集合经验模态分解(Ensemble empirical mode decomposition, EEMD)和小波的信号降噪方法进行对比,利用信噪比和均方根误差比较降噪效果。再通过滚动轴承内外圈故障信号的频谱分析实例,证明该方法很好地去除混杂在故障信号中的噪声,准确地判断出滚动轴承发生故障的类型及部位。 相似文献
20.
基于EMD与神经网络的滚动轴承故障诊断方法 总被引:27,自引:17,他引:27
针对滚动轴承故障振动信号的非平稳特征,提出了一种基于经验模态分解(Empirical Mode Decomposition,简称EMD)和神经网络的滚动轴承故障诊断方法。该方法首先对原始信号进行了经验模态分解,将其分解为多个平稳的固有模态函数(Intrinsic Mode function,简称IMF)之和,再选取若干个包含主要故障信息的IMF分量进行进一步分析,由于滚动轴承发生故障时,加速度振动信号各频带的能量会发生变化,因而可从各IMF分量中提取能量特征参数作为神经网络的输入参数来识别滚动轴承的故障类型。对滚动轴承的正常状态、内圈故障和外圈故障信号的分析结果表明,以EMD为预处理器提取各频带能量作为特征参数的神经网络诊断方法比以小波包分析为预处理器的神经网络诊断方法有更高的故障识别率,可以准确、有效地识别滚动轴承的工作状态和故障类型。 相似文献