首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 843 毫秒
1.
Oxidation activity and stability under reaction was investigated for a series of mixed oxide catalysts, doped or not by a precious metal (Pd, Pt). The reaction feedstock, containing CO, H2, CH4, CO2 and H2O, simulated gases issued from H2 production processes for fuel cells. Contrarily to conventional noble metal catalysts, mixed oxide samples present generally good stability under reaction at high temperature. The activities measured for the perovskite and hexaaluminate catalysts, are however largely lower than that of the reference Pd/Al2O3 catalyst. High activities were obtained after impregnation of 1.1 wt.% Pd or 0.8 wt.% Pt on the hexaaluminates samples. Even if Pd/Al2O3 was found to present a high activity, this sample suffered from drastic deactivation at 700 °C. Better stability were obtained on perovskite. Furthermore, doping hexaaluminate by Pt led to samples with good activities and high stability. Even if better activities were obtained by doping the hexaaluminate samples by Pd, the Pd/BaAl12O19 strongly deactivated, as it was previously observed for the reference catalyst. Interestingly, this Pd deactivation was not observed when Pd was impregnated on the Mn substituted hexaaluminate, leading to a stable and active catalyst. This suggests that it is possible to stabilize the palladium in its oxidized form at high temperature (700 °C) on the surface of some supports.  相似文献   

2.
In this work, different procedures, namely carbonate coprecipitation and modified solid–solid diffusion, were used to prepare hexaaluminate samples, unsupported or supported onto θ-Al2O3. These samples were used as catalyst for the methane total oxidation as synthesized or after impregnation of 1 wt% Pd. It was observed that the modified solid–solid diffusion procedure is an efficient method to obtain the hexaaluminate structure. At a theoretical ratio x of hexaaluminate onto Al2O3 less than 0.6 (xLa0.2Sr0.3Ba0.5MnAl11O19 + (1−x)·Al2O3, with x = 0.25, 0.60), samples with high specific surface area and θ-Al2O3 structure are then obtained. Large differences in catalytic activity can be observed among the series of sample synthesized. All the pure oxide samples (i.e. without palladium) present low catalytic activity for methane total oxidation compared to a reference Pd/Al2O3 catalyst. The highest activity was obtained for the samples presenting a θ-Al2O3 structure (with x = 0.60) and a high surface area. Impregnation of 1 wt% palladium resulted in an increase in catalytic activity, for all the solids synthesized in this work. Even if the lowest light-off temperature was obtained on the reference sample, similar methane conversions at high temperature (700 °C) were obtained on the stabilized θ-Al2O3 solids (x = 0.25, 0.60). Moreover, the reference sample is found to strongly deactivate with reaction time at the temperature of test (700 °C), due to a progressive reduction of the PdOx active phase into the less active Pd° phase, whereas excellent stabilities in reaction were obtained on the pure and palladium-doped hexaaluminate and supported θ-Al2O3 samples. This clearly showed the beneficial effect of the support for the stabilization of the PdOx active phase at high reaction temperature. These properties are discussed in term of oxygen transfer from the support to the palladium particle. Oxygen transfer is directly related to the Mn3+/Mn2+ redox properties (in the case of the hexaaluminate and stabilized θ-Al2O3 samples), that allows a fast reoxidation of the metal palladium sites since palladium sites reoxidation cannot occur directly by gaseous dioxygen adsorption and dissociation on the surface.  相似文献   

3.
This study reports the influence of palladium salt precursor on the catalytic activity of palladium-doped hexaaluminate catalysts for the combustion of 1 vol% CH4 in the presence of CO2 and H2O as inhibitors. Thermal stability of the catalysts is evaluated in long-term catalytic test at 700 °C. The hexaaluminate supports were synthesized using two different procedures: conventional coprecipitation and solid/solid diffusion procedure. Palladium impregnation was carried out by two different routes using Pd(NO3)2 in water or Pd(acac)2 in toluene as impregnation solution. It was observed that using Pd(acac)2 as precursor allows to attain higher dispersion of the active phase (Pd particles size <3 nm). Compared to the catalysts obtained by impregnation of Pd(NO3)2, higher catalytic activities are then obtained. Nevertheless, a deactivation of the samples obtained using Pd(acac)2 is observed. At the end of the stability test, almost similar catalytic activity is obtained whatever the palladium precursor. Reduction–reoxidation experiment showed that this deactivation is irreversible, and TEM analysis suggest that this deactivation is related to the sintering of Pd particles under reaction over samples synthesized using Pd(acac)2 as precursor.  相似文献   

4.
Manganese substituted hexaaluminate has been prepared using environmentally benign surfactants such as Triton X-100, under ambient condition with a commercial alumina sol and metal acetate precursors. The surface area of the pure alumina can be controlled to 10–70 m2 g−1 using cetyltrimethylammonium chloride after heating in oxygen flow at 1200°C for 6 h. The crystal structure of the obtained alumina was high purity θ-Al2O3. Incorporation of La and Mn leads to the formation of the high purity manganese substituted hexaaluminate with a surface area of 30–40 m2 g−1 which is also controllable using organic additives such as urea. The catalytic activity of the manganese substituted hexaaluminate was comparable to the sol–gel derived hexaaluminate catalyst from metal alkoxides.  相似文献   

5.
We have examined the adsorption of CO and NO on powder Pd/Al2O3, Pd–Ce/Al2O3 and CeO2/Al2O3 catalysts, using temperature-programmed desorption (TPD). For CO adsorption on oxidized and pre-reduced Pd–Ce/Al2O3 TPD profiles are identical to those observed for Pd/Al2O3, suggesting that interactions between ceria and Pd have a negligible effect on the adsorption properties of CO. It does, however, affect the oxidation state of the palladium particles. For NO, there are differences between Pd/Al2O3 and Pd–Ce/Al2O3. On oxidized catalysts, Pd/Al2O3 is more efficient for NO dissociation. However, pre-reduction increases the amount of NO that can adsorb on Pd–Ce/Al2O3 and react to N2O and N2. In comparison with Pd/Al2O3, reduced Pd–Ce/Al2O3catalysts dissociate NO at relatively high temperatures but they are more reactive and favor N2 over N2O.  相似文献   

6.
Oxidation of methane over Pd/mixed oxides for catalytic combustion   总被引:3,自引:0,他引:3  
Palladium catalysts supported on mixed oxides (Pd/Al2O3–MOx; M=Co, Cr, Cu, Fe, Mn, and Ni) were investigated for the low-temperature catalytic combustion of methane. Although the surface area decreased with increasing NiO in Pd/mAl2O3nNiO, Pd/Al2O3–36NiO demonstrated an excellent activity due to the small particle size of palladium. Also, the catalytic activity strongly depended on the composition of the support. Temperature-programmed desorption of oxygen revealed that the catalytic activity in the low-temperature region depends on the adsorption state of oxygen on palladium. The activity was enhanced when the amount of adsorbed oxygen increased. In-situ XRD analysis indicated that the PdO phase was thermally stabilized on Pd/Al2O3–36NiO.  相似文献   

7.
The role of vanadium oxide and palladium on the benzene oxidation reaction over Pd/V2O5/Al2O3 catalysts was investigated. The Pd/V2O5/Al2O3 catalysts were more active than V2O5/Al2O3 and Pd/Al2O3 catalysts. The increase of vanadium oxide content decreased the Pd dispersion and increased the benzene conversion. A strong Pd particle size effect on benzene oxidation reaction was observed. Although the catalysts containing high amount of V4+ species were more active, the Pd particle size effect was responsible for the higher activity.  相似文献   

8.
The effect of palladium incorporation on the performance of Cu–ZnO(Al2O3) during the hydrogenation of carbon dioxide has been assessed. Temperature-programmed reduction profiles and X-ray photoelectron spectra of copper revealed that Pd enhances copper oxide reduction. Carbon dioxide conversion and methanol yield were found to increase on Pd-loaded catalysts. The importance of the palladium incorporated to the base Cu–ZnO(Al2O3) catalyst in determining the catalytic activity is discussed in terms of the relative ease with which hydrogen is dissociated on the Pd particles and then spilt over the Cu–ZnO phase of the base catalyst.  相似文献   

9.
The corrosion behaviour of magnesia-chromite refractory by an alumina-rich (15–20 wt.%) stainless steelmaking slag is investigated by rotating finger tests in a vacuum induction furnace. The influence on the refractory wear, of the process temperature, corrosion time and, in particular, the high Al2O3 content in the slag, is discussed. Two distinct mechanisms cause primary chromite degradation: FeOx and Cr2O3 decomposition because of low oxygen potentials and dissolution by infiltrated slag due to the high Al2O3 slag content. Upon decomposition, small metallic particles and pores are homogeneously generated inside the primary chromite. At the refractory/slag interface, a relatively continuous solid (Mg,Mn)[Al,Cr]2O4 spinel layer is formed. Its density and stability decreases with higher temperatures and more turbulent conditions. The spinel formation arises through heterogeneous in situ precipitation from a slag rich in spinel forming compounds. Higher Al2O3 levels in the slag promote the spinel layer formation, which may limit slag infiltration. Finally, it is shown that the present experimental procedure is an excellent tool to simulate refractory wear in industrial processes, diminishing the risks associated with plant trials.  相似文献   

10.
C. Neyertz  M. A. Volpe  C. Gigola   《Catalysis Today》2000,57(3-4):255-260
We have studied the activity and selectivity of Pd/γ-Al2O3, VOx/γ-Al2O3 and Pd–VOx/γ-Al2O3 catalysts for the decomposition of NO and the reduction of NO with CO. Pd–VOx/γ-Al2O3 catalysts were prepared by anchoring Pd(AcAc)2 on VOx/γ-Al2O3. Characterization of the binary samples by hydrogen chemisorption and TPR measurements indicated that the reduction of VOx is enhanced by a close contact with palladium and that partially reduced vanadia decorate noble metal particles. This palladium–vanadium interaction alters the catalytic properties of palladium: the activity for NO decomposition is higher for the binary sample and, for the NO–CO reaction, both the activity and the selectivity to N2 increase when vanadium is in contact with palladium.  相似文献   

11.
The effect of pH during sol–gel synthesis on the structural and physicochemical properties of a Pd–Al2O3 three-way catalyst (TWC) prepared by the sol–gel method was investigated by using BET, X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), transmission electron microscopy (TEM) and solid state 27Al MAS NMR. The Pd–Al2O3 catalyst prepared at pH=10 (Pd–Al2O3–B) showed a high activity in three-way catalytic reaction, a high dispersion of Pd, and large surface area and pore volume. A basic condition (pH=10) in the sol–gel process was essential for the preparation of highly dispersed palladium clusters on alumina gel. The formation of highly stable palladium oxide species in Pd–Al2O3–B that were not completely reduced at 423 K was ascribed to the strong interaction between Pd and oxygen in alumina texture, resulting in the formation of –Al–O–Pd bond.  相似文献   

12.
Cu-based spinel-oxides CuB2O4 (B = Fe, Mn, Cr, Ga, Al, or Fe0.75Mn0.25) were synthesized via a sol–gel method and subsequent solid-state reaction. The spinels mechanically mixed with γ-Al2O3 were evaluated for production of hydrogen from dimethyl ether steam reforming (DME SR). The reduction behavior and crystal property of these spinel-oxides, and the Cu oxidation state in spinel catalysts were investigated by temperature-programmed reduction, X-ray diffraction, and X-ray photoelectron spectroscopy techniques. The reduced phases of the Cu-based spinel catalysts that strongly affected the catalytic activity and durability were composed of metallic copper with metal oxides (MnO (B = Mn), Cr2O3 (B = Cr), and Al2O3 (B = Al)) or with spinels (CuGa2O4 (B = Ga), Fe3O4 (B = Fe), and MnFe2O4 (B = Fe0.75Mn0.25). The stability of B metal oxides and the interaction between copper species and B metal oxides significantly contributed to the reforming performance.  相似文献   

13.
Ce0.5Zr0.5O2, Ce0.5Zr0.2Mn0.3O2 and Ce0.5Mn0.5O2 were prepared by citric acid sol–gel method. The effect of manganese on the structural and redox properties of ceria-based mixed oxides was investigated by means of powder X-ray diffraction, X-ray photoelectron spectroscopy, Brunauer–Emmett–Teller analyses, temperature-programmed reduction and catalytic activity evaluation in the presence of excess O2. The results showed that some Mn cations could enter into the ceria lattice to form solid solutions. Mn3O4 appeared due to the instability of the mixed oxides with increment of the Mn doping ratio while another oxide Mn2O3 is detected in the physical mixture of ceria and manganese oxide. These Mn-doped mixed oxides, especially Ce0.5Mn0.5O2, presented better catalytic activities than Ce0.5Zr0.5O2 and even Pt-loaded catalyst for total oxidation of C3H8 and oxidative sorption of NO in the presence of excess oxygen. The oxidation ability of Mn and the strong interaction between Mn and Ce were suggested to promote the oxygen storage/transport capacity of the mixed oxides as well as reactive adsorption of nitric oxide and hydrocarbons.  相似文献   

14.
An ethanol dehydration procedure has been used to precipitate gel-like citrate precursors containing cobalt and manganese transition metal ions. Further annealing led to the MnxCo3−xO4 spinel oxide series (x: 1, 1.5, 2, 3). Annealing temperature and treatment time were also evaluated to optimize the performance of the oxides as active electrode materials in lithium cells. The manganese–cobalt mixed oxides obtained by this procedure were cubic or tetragonal phases depending on the cobalt content. SEM images showed spherical macroporous aggregates for MnCo2O4 and hollow spheres for manganese oxides. The galvanostatic cycling of lithium cells assembled with these materials demonstrated a simultaneous reduction of cobalt and manganese during the first discharge and separation of cobalt- and manganese-based products on further cycling. As compared with binary manganese oxides, a notorious electrochemical improvement was observed in the mixed oxides. This behavior is a consequence of the synergistic effect of both transition metal elements, associated with the in-situ formation of a nanocomposite electrode material when cobalt is introduced in the manganese oxide composition. Values higher than 400 mAh/g were sustained after 50 cycles for MnCo2O4.  相似文献   

15.
Effects of the method of burning and addition of catalysts in the chimney of civil-used stove on emission of air pollutants were studied. Alumina-supported copper and manganese oxides and palladium catalysts were used to purify the flue gas emitted from the civil-used stoves. The results show that, in upper burning case, both Cu–Mn–O/Al2O3 and Pd/CuO/Al2O3 catalysts can decrease the ratio of CO/CO2 to <0.01, and remove SO2 and volatile organic chemicals (VOC) from the flue gas to some extent. Deactivation of the catalyst results from the accumulation of sulfate groups on catalyst support. The life of the catalyst can be extended by adding a honeycomb of lime before the catalyst.  相似文献   

16.
Catalytic combustion of methane over Pd and Pt/SiO2/-Al2O3 membranes was studied in the temperature range 300–650 °C. Fuel and oxygen were fed at opposite membrane sides. In order to improve reactor controllability the -Al2O3 membranes were impregnated with SiO2 sol resulting to smaller pore size. Methane conversions up to 100% for the palladium membrane and up to 42% for the platinum membrane were achieved. The results indicated a transition from kinetic to mass transfer control within the temperature range investigated. This was accompanied by reduction of methane slip from tube to shell side with increasing temperature. CO and H2 were detected in the product gases of the palladium membrane. Their concentration could be reduced by applying a trans-membrane pressure difference. Low concentrations of CO were observed for the Pt/SiO2/-Al2O3 membrane, while no CO or H2 were detected for a Pd/-Al2O3 membrane operating in dead-end configuration.  相似文献   

17.
Temperature-programmed reduction (TPR), oxidation (TPO), Raman spectroscopy, X-ray photoelectron spectroscopy (XPS) and X-ray diffraction (XRD) were used to characterise catalysts based on manganese oxides, copper oxides or one of them mixed with platinum or palladium-supported on γ-alumina. The catalysts were characterised before and after they had been exposed either to high temperature in the presence of steam or to sulphur dioxide. Raman spectroscopy, XRD, XPS and TPR performed on the fresh samples of MnOx, mixed MnOx–Pt and MnOx–Pd revealed the presence of a mixture of manganese oxides, particularly Mn2O3. In the fresh mixed MnOx–Pd and CuOx–Pd samples, Pd catalysed the reduction of both MnOx and CuOx, whereas Pt only catalysed the reduction of MnOx. After hydrothermal treatment at 900°C of the MnOx, mixed MnOx–Pt and MnOx–Pd samples, there was a formation of new manganese oxide phase, Mn3O4 detected by Raman spectroscopy. TPR revealed increasing interaction between the metal oxides and the noble metals in the hydrothermally treated mixed MnOx–Pd and CuOx–Pd samples, and also the appearance of interaction in the treated mixed CuOx–Pt sample. The sulphur adsorbed in all the MnOx samples formed sulphate, which was more difficult to reduce than the oxides. Also, the reduction temperature of sulphates was lowered when noble metals are present.  相似文献   

18.
A synergetic effect in the methane oxidation activity of palladium and manganese hexaaluminate was studied over Pd-modified manganese-hexaaluminate catalysts, prepared by incipient wetness impregnation and calcined at 1,200?°C. The magnitude of the synergetic effect is found to be depends on the palladium precursor: it is higher for palladium nitrate and palladium acetate than for tetrachloropalladic acid. The Pd/MnLaAl11O19 catalysts were characterized by X-ray diffraction, X-ray microanalysis, transmission electron microscope and temperature-programmed reduction with hydrogen. These data were compared with the properties of Pd/Al2O3 catalysts. At variation of Pd-precursors, a minor trend to the decrease of the Pd particle size was observed at transition from the ex-chloride Pd/MnLaAl11O19 catalyst with uniform Pd-distribution profile to the ex-nitrate and ex-acetate catalysts with egg-shell Pd-distribution. Slightly smaller size of metal palladium particles in the ex-nitrate and ex-acetate catalysts leads to the formation of larger amount of PdO dispersed on their surface during oxygen-pretreatment in H2-TPR experiments (Pd/PdO atomic ratio was 1/4) and under methane-oxidation mixture in comparison with ex-chloride catalysts (Pd/PdO?=?4/1). The palladium addition to manganese-hexaaluminate changes strongly its redox properties, as result Mn3+ reduction to Mn2+ take place about 100?°C below that of pure hexaalunimate. The latter indicate probably on the higher oxygen mobility in Pd-modified manganese-hexaaluminate. A higher PdO/Pd ratio formed in the ex-nitrate and ex-acetate Pd-modified manganese-hexaaluminate catalysts together with the high oxygen mobility provide the synergetic effect in methane oxidation activity at light-off temperature region. The high catalytic activity of manganese-hexaaluminate ensures methane combustion efficiency of the Pd-modified manganese-hexaaluminate catalysts at temperature above 700?°C.  相似文献   

19.
Mn effect and characterization on γ-Al2O3-, -Al2O3- and SiO2-supported Ru catalysts were investigated for Fischer–Tropsch synthesis under pressurized conditions. In the slurry phase Fischer–Tropsch reaction, γ-Al2O3 catalysts showed higher performance on CO conversion and C5+ selectivity than -Al2O3 and SiO2 catalysts. Moreover, Ru/Mn/γ-Al2O3 exhibited high resistance to catalyst deactivation and other catalysts were deactivated during the reaction. From characterization results on XRD, TPR, TEM, XPS and pore distribution, Ru particles were clearly observed over the catalysts, and γ-Al2O3 catalysts showed a moderate pore and particle size such as 8 nm, where -Al2O3 and SiO2 showed highly dispersed ruthenium particles. The addition of Mn to γ-Al2O3 enhanced the removal of chloride from RuCl3, which can lead to the formation of metallic Ru with moderate particle size, which would be an active site for Fischer–Tropsch reaction. Concomitantly, manganese chloride is formed. These schemes can be assigned to the stable nature of Ru/Mn/γ-Al2O3 catalyst.  相似文献   

20.
Four different modifications of alumina were prepared for use as the support for a Pd catalyst used for the partial oxidation of methane to syngas. The catalysts were washcoated on a metallic monolith in order to determine their activities at high gas flow rates. Compared with the Pd/Al2O3 catalyst, enhanced partial oxidation activities were observed with the Pd/CeO2/Al2O3, Pd/CeO2/BaO/Al2O3 and Pd/CeO2/BaO/SrO/Al2O3 catalysts. The palladium particles were better dispersed in the presence of CeO2 and SrO. Adding BaO, CeO2 and BaO–CeO2 to γ-Al2O3 prevented the transformation of the alumina phase during the 3-day aging process at 1000 °C, providing the support with some level of thermal stability. The addition of small amounts of SrO to the CeO2/BaO/Al2O3 support enhanced the thermal stability of the Pd particles and minimized their sintering. The triply promoted Pd catalyst studied in this work was effective in carrying out partial oxidation at high temperatures, with BaO and CeO2 promoting the thermal stability of the support, CeO2 and SrO dispersing the Pd particles and SrO anchoring the Pd particles strongly to the support. The composition of the catalyst which gave both the highest partial oxidation activity and the best thermal stability was Pd(2)/CeO2(23)/BaO(11)/SrO(0.8)/Al2O3.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号