首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
Field-scale dissolution of a multicomponent DNAPL (dense nonaqueous-phase liquid) source intentionally emplaced below the water table is evaluated in a well-characterized natural aquifer setting. The block-shaped source contained 23 kg of a trichloromethane, trichloroethene, and perchloroethene mixture homogeneously distributed at 5% saturation of pore space. Dissolution was monitored for 3 yr via down-gradient samplers (1-m fence) and occasional intra-source sampling. Although intra-source equilibrium dissolution was shown and endorsed by supporting modeling and literature lab data, less than equilibrium concentrations were predominantly monitored in the 1-m fence. This was ascribed to significant by-passing of the source by groundwater flow due to its low permeability relative to the aquifer and associated dilution of concentrations emitted from the source. Heterogeneous source dissolution occurred despite the relative homogeneity of the source and aquifer and was ascribed to dissolution fingering, which has not been previously field-demonstrated. Bulk bypass of groundwater flow around the source zone caused slow dissolution rates, with 77% of the source remaining after 3 yr and a projected longevity of approximately 25 yr. Observed dissolution fingering would have significantly increased longevity as it increasingly caused intra-source bypass of remaining DNAPL. Our dissolution interpretations were endorsed by additional data collected after 6 yr during source remediation via permanganate oxidation.  相似文献   

2.
High-saturation pools of dense nonaqueous phase liquid (DNAPL) are long-term sources of groundwater contamination at many hazardous-waste sites. DNAPL pools consist of a high saturation zone with slow dissolution overlaid by a transition zone with lower saturations and more rapid dissolution. Effects of biological activity on pool dissolution must be understood to evaluate and implement bioremediation strategies. Bioenhanced dissolution of tetrachloroethene (PCE) in transition zones of high-saturation pools was investigated in a custom-designed 5-cm flow cell. Experiments were conducted to characterize mass transfer following DNAPL emplacement, with and without an active microbial culture capable of reductive dehalogenation. For average pool saturations < or = 0.55, mass transfer during biodegradation was enhanced by factors of 4-13, due primarily to high mass flux of PCE degradation products. However, at an average pool saturation of 0.74, mass transfer was enhanced by factors less than 1.5. Mass transfer was significantly greater from pools with an observable transition zone than without. Advective flow through multiphase transition zones enhanced dissolution and biological activity. These laboratory-scale experimental results suggest that biotechnologies may be effective remediation strategies for depletion of source zones within pool transition zones.  相似文献   

3.
Reactive tracer tests were conducted to evaluate the relationship between contaminant mass reduction, Rm, and flux reduction, Rj, in laboratory experiments with porous media contaminated with a dense nonaqueous phase liquid (DNAPL). The reduction in groundwater contaminant flux resulting from partial mass removal was obtained from continuous and pulsed cosolvent and surfactant flushing dissolution tests in laboratory flow chambers packed with heterogeneous porous media. Using the streamtubes concept a Lagrangian analytical solution was applied to study the contaminant dissolution. The analytical solution was independently parametrized using nonreactive and reactive tracertests and the predicted dissolution was compared to the observed data. Analytical solution parameters related to aquifer hydrodynamic heterogeneities were determined from a nonreactive tracer, while those related to DNAPL spatial distribution heterogeneity were obtained from a reactive tracer. Reactive travel time variance, derived from this combination of tracers, was used to predict the relationship between Rm and Rj. Predictions based on the tracer tests closely matched measured dissolution data, suggesting that tracers can be used to characterize the DNAPL spatial distribution heterogeneity controlling the dissolution behavior. Experimental results demonstrated that increased reactive travel time variance led to greater flux reduction for a given partial mass removal.  相似文献   

4.
A bench-scale study was performed to evaluate the enhancement of tetrachloroethene (PCE) dissolution from a dense nonaqueous phase liquid (DNAPL) source zone due to reductive dechlorination. The study was conducted in a pair of two-dimensional bench-scale aquifer systems using soil and groundwater from Dover Air Force Base, DE. After establishment of PCE source zones in each aquifer system, one was biostimulated (addition of electron donor) while the other was biostimulated and then bioaugmented with the KB1 dechlorinating culture. Biostimulation resulted in the growth of iron-reducing bacteria (Geobacter) in both systems as a result of the high iron content of the Dover soil. After prolonged electron donor addition methanogenesis dominated, but no dechlorination was observed. Following bioaugmentation of one system, dechlorination to ethene was achieved, coincident with growth of introduced Dehalococcoides and other microbes in the vicinity and downgradient of the PCE DNAPL (detected using DGGE and qPCR). Dechlorination was not detected in the nonbioaugmented system over the course of the study, indicating that the native microbial community, although containing a member of the Dehalococcoides group, was not able to dechlorinate PCE. Over 890 days, 65% of the initial emplaced PCE was removed in the bioaugmented, dechlorinating system, in comparison to 39% removal by dissolution from the nondechlorinating system. The maximum total ethenes concentration (3 mM) in the bioaugmented system occurred approximately 100 days after bioaugmentation, indicating that there was at least a 3-fold enhancement of PCE dissolution atthis time. Removal rates decreased substantially beyond this time, particularly during the last 200 days of the study, when the maximum concentrations of total ethenes were only about 0.5 mM. However, PCE removal rates in the dechlorinating system remained more than twice the removal rates of the nondechlorinating system. The reductions in removal rates over time are attributed to both a shrinking DNAPL source area, and reduced flow through the DNAPL source area due to bioclogging and pore blockage from methane gas generation.  相似文献   

5.
Although potassium permanganate (KMnO4) flushing is commonly used to destroy chlorinated solvents in groundwater, many of the problems associated with this treatment scheme have not been examined in detail. We conducted a KMnO4 flushing experiment in a large sand-filled flow tank (L x W x D = 180 cm x 60 cm x 90 cm) to remove TCE emplaced as a DNAPL in a source zone. The study was specifically designed to investigate cleanup progress and problems of pore plugging associated with the dynamics of the solid-phase reaction front (i.e., MnO2) using chemical and optical monitoring techniques. Ambient flow through the source zone formed a plume of dissolved TCE across the flow tank. The volume and concentration of TCE plume diminished with time because of the in situ oxidation of the DNAPL source. The migration velocity of the MnO2 reaction front decreased with time, suggesting that the kinetics of the DNAPL oxidation process became diffusion-controlled because of the pore plugging. A mass balance calculation indicated that only approximately 18% of the total applied KMnO4 (MnO4- = 1250 mg/ L) participated in the oxidation reaction to destroy approximately 41% of emplaced TCE. Evidently, the efficiency of KMnO4 flushing scheme diminished with time due to pore plugging by MnO2 and likely CO2, particularly in the TCE source zone. In addition, the excess KMnO4 used for flushing may cause secondary aquifer contamination. One needs to be concerned about the efficacy of KMnO4 flushing in the field applications. Development of a new approach that can provide both contaminant destruction and plugging/ MnO4- control is required.  相似文献   

6.
A seven-year study was conducted to assess the effectiveness of hybrid poplar trees to remediate polycyclic aromatic hydrocarbon (PAH) compounds in soil and groundwater at a creosote-contaminated site. A reduction in the areal extent of the PAH plume was observed in the upper half of the 2-m-thick saturated zone, and PAH concentration levels in the groundwater declined throughout the plume. PAH concentrations began to decline during the period between the third and fourth growing seasons, which coincided with the propagation of the tree roots to the water table region. Remediation was limited to naphthalene and several three-ring PAHs (acenaphthylene and acenaphthene). PAH concentrations in soil and aquifer sediment samples also declined over time; however, levels of four-ring PAHs persisted at the lower depths during the study period. The naphthalene to total PAH concentration ratio in the most contaminated groundwater decreased from >0.90 at the beginning of the second growing season to approximately 0.70 at the end the study. Remediation in the lower region of the saturated zone was limited bythe presence of a 0.3-m-thick layer of creosote present as a dense nonaqueous phase liquid (DNAPL). The nearly steady-state condition of the PAH concentrations observed during the last three years of the study suggests that the effectiveness of the phytoremediation system is limited by the rate of PAH dissolution from the DNAPL source.  相似文献   

7.
Tetrachloroethene (PCE) dense nonaqueous-phase liquid (DNAPL) can act as a persistent groundwater contamination source for decades. Biologically enhanced dissolution of pure PCE DNAPL has potential for reducing DNAPL longevity as indicated previously (Environ. Sci. Technol. 2000, 34, 2979). Reported here are expanded studies to evaluate donor substrates that offer different remediation strategies for bioenhanced DNAPL dissolution, including pentanol (soluble substrate, fed continuously), calcium oleate (insoluble substrate, placed in column initially by alternate pumping of sodium oleate and calcium chloride), and olive oil (mixed with PCE and placed in column initially). Compared with a no-substrate column control, the DNAPL dissolution rate was enhanced about three times when directly coupled with biological transformation. The major degradation product formed was cDCE, but significant amounts of VC and ethene were also found with some columns. Extensive methanogenesis, which reduced PCE transformation, occurred in both the pentanol-fed and oleate-amended columns, but not in the olive-oil-amended column, suggesting that methanogens managed to colonize column niches where PCE DNAPL was not present. Detrimental methane production in the pentanol-fed column was nearly eliminated by presaturating the feed solution with PCE. These results suggest potential DNAPL remediation strategies to enhance dehalogenation while controlling competitive methanogenic utilization of donor substrates.  相似文献   

8.
Permanganate injection is increasingly applied for in situ destruction of chlorinated ethenes in groundwater. This laboratory and field study demonstrates the roles that carbon isotope analysis can play in the assessment of oxidation of trichloroethene (TCE) by permanganate. In laboratory experiments a strong carbon isotope fractionation was observed during oxidation of TCE with similar isotopic enrichment factors (-25.1 to -26.8 per thousand) for initial KMnO4 concentrations between 67 and 1,250 mg/L. At the field site, a single permanganate injection episode was conducted in a sandy aquifer contaminated with TCE as dense nonaqueous liquid (DNAPL). After injection, enriched delta13C values of up to +204% and elevated Cl- concentrations were observed at distances of up to 4 m from the injection point. Farther away, the Cl- increased without any change in delta13C of TCE suggesting that Cl- was not produced locally but migrated to the sampling point Except for the closest sampling location to the injection point, the delta13C rebounded to the initial 613C again, likely due to dissolution of DNAPL Isotope mass balance calculations made it possible to identify zones where TCE oxidation continued to occur during the rebound phase. The study indicates that delta13C values can be used to assess the dynamics between TCE oxidation and dissolution and to locate zones of oxidation of chlorinated ethenes that cannot be identified from the Cl- distribution alone.  相似文献   

9.
Chlorinated ethene source remediation: lessons learned   总被引:1,自引:0,他引:1  
Chlorinated solvents such as trichloroethene (TCE) and tetrachloroethene (PCE) are widespread groundwater contaminants often released as dense nonaqueous phase liquids (DNAPLs). These contaminants are difficult to remediate, particularly their source zones. This review summarizes the progress made in improving DNAPL source zone remediation over the past decade, and is structured to highlight the important practical lessons learned for improving DNAPL source zone remediation. Experience has shown that complete restoration is rare, and alternative metrics such as mass discharge are often useful for assessing the performance of partial restoration efforts. Experience also has shown that different technologies are needed for different times and locations, and that deliberately combining technologies may improve overall remedy performance. Several injection-based technologies are capable of removing a large fraction of the total contaminant mass, and reducing groundwater concentrations and mass discharge by 1 to 2 orders of magnitude. Thermal treatment can remove even more mass, but even these technologies generally leave some contamination in place. Research on better delivery techniques and characterization technologies will likely improve treatment, but managers should anticipate that source treatment will leave some contamination in place that will require future management.  相似文献   

10.
Stable carbon isotope analysis of chlorinated ethenes and ethene was performed at a site contaminated with trichloroethene (TCE), a dense non-aqueous phase liquid (DNAPL). The site is located in fractured bedrock and had variable groundwater hydraulic gradients during the study due to a local excavation project. Previous attempts to biostimulate a pilot treatment area at the site resulted in the production of cis-1,2-dichloroethene (cis-DCE), the first product of reductive dechlorination of TCE. Cis-DCE concentrations accumulated however, and there was no appreciable production of the breakdown products from further reductive dechlorination, vinyl chloride (VC) and ethene (ETH). Consequently, the pilot treatment area was bioaugmented with a culture of KB-1, a natural microbial consortium known to completely reduce TCE to nontoxic ETH. Due to ongoing dissolution of TCE from DNAPL in the fractured bedrock, and to variable hydraulic gradients, concentration profiles of dissolved TCE and its degradation products cis-DCE, VC, and ETH could not convincingly confirm biodegradation of the chlorinated ethenes. Isotopic analysis of cis-DCE and VC, however, demonstrated that biodegradation was occurring in the pilot treatment area. The isotope values of cis-DCE and VC became significantly more enriched in 13C over the last two sampling dates (in one well from -17.6%o to -12.8%o and from -22.5%o to -18.2%o for cis-DCE and VC, respectively). Quantification of the extent of biodegradation in the pilot treatment area using the Rayleigh model indicated that, depending on the well, between 21.3% and 40.7% of the decrease in cis-DCE and between 15.2% and 36.7% of the decrease in VC concentrations can be attributed to the effects of biodegradation during this time period. Within each well, the isotope profile of TCE remained relatively constant due to the continuous input of undegraded TCE due to DNAPL dissolution.  相似文献   

11.
In the vicinity of dense nonaqueous phase liquid (DNAPL) contaminant source zones, aqueous concentrations of tetrachloroethene (PCE) in groundwater may approach saturation levels. In this study, the ability of two PCE-respiring strains (Desulfuromonas michiganensis and Desulfitobacterium strain PCE1) to dechlorinate high concentrations of PCE was experimentally evaluated and depended on the initial biomass concentration. This suggests high PCE concentrations permanently inactivated a fraction of biomass, which, if sufficiently large, prevented dechlorination from proceeding. The toxic effects of PCE were incorporated into a model of dehalorespirer growth by adapting the transformation capacity concept previously applied to describe biomass inactivation by products of cometabolic TCE oxidation. The inactivation growth model was coupled to the Andrews substrate utilization model, which accounts for the self-inhibitory effects of PCE on dechlorination rates, and fit to the experimental data. The importance of incorporating biomass inactivation and self-inhibition effects when modeling reductive dechlorination of high PCE concentrations was demonstrated by comparing the goodness-of-fit of the Andrews biomass inactivation and three alternate models that do capture these factors. The new dehalorespiration model should improve our ability to predict contaminant removal in DNAPL source zones and determine the inoculum size needed to successfully implement bioaugmentation of DNAPL source zones.  相似文献   

12.
Although in situ remediation technologies have been used to aggressively treat dense nonaqueous phase liquid (DNAPL) source zones, complete contaminant removal or destruction is rarely achieved. To evaluate the effects of partial source zone mass removal on dissolved-phase contaminant flux, four experiments were conducted in a two-dimensional aquifer cell that contained a tetrachloroethene (PCE) source zone and down-gradient plume region. Initial source zone PCE saturation distributions, quantified using a light transmission system, were expressed in terms of a ganglia-to-pool ratio (GTP), which ranged from 0.16 (13.8% ganglia) to 1.6 (61.5% ganglia). The cells were flushed sequentially with a 4% (wt.) Tween 80 surfactant solution to achieve incremental PCE mass removal, followed by water flooding until steady-state mass discharge and plume concentrations were established. In all cases, the GTP ratio decreased with increasing mass removal, consistent with the observed preferential dissolution of PCE ganglia and persistence of high-saturation pools. In the ganglia-dominated system (GTP = 1.6), greater than 70% mass removal was required before measurable reductions in plume concentrations and mass discharge were observed. For pool-dominated source zones (GTP < 0.3), substantial reductions (>50%) in mass discharge were realized after only 50% mass removal.  相似文献   

13.
The Solvent Extraction Residual Biotreatment (SERB) technology was evaluated at a former dry cleaner site in Jacksonville, FL, where an area of tetrachloroethylene (PCE) contamination was identified. The SERB technology is a treatmenttrain approach for complete site restoration, which combines an active in situ dense nonaqueous-phase liquid (DNAPL) removal technology, cosolvent extraction, with a passive enhanced in situ bioremediation technology, reductive dechlorination. During the in situ cosolvent extraction test, approximately 34 kL of 95% ethanol/5% water (v:v) was flushed through the contaminated zone, which removed approximately 60% of the estimated PCE mass. Approximately 2.72 kL of ethanol was left in the subsurface, which provided electron donorfor enhancement of biological processes in the source zone and downgradient areas. Quarterly groundwater monitoring for over 3 yr showed decreasing concentrations of PCE in the source zone from initial values of 4-350 microM to less than 150 microM during the last sampling event. Initially there was little to no daughter product formation in the source zone, but after 3 yr, measured concentrations were 242 microM for cis-dichloroethylene (cis-DCE), 13 microM for vinyl chloride, and 0.43 microM for ethene. In conjunction with the production of dissolved methane and hydrogen and the removal of sulfate, these measurements indicate that in situ biotransformations were enhanced in areas exposed to the residual ethanol. First-order rate constants calculated from concentration data for individual wells ranged from -0.63 to -2.14 yr(-1) for PCE removal and from 0.88 to 2.39 yr(-1) for cis-DCE formation. First-order rate constants based on the change in total mass estimated from contour plots of the groundwater concentration data were 0.75 yr(-1) for cis-DCE, -0.50 yr(-1) for PCE, and -0.33 yr(-1) for ethanol. Although these attenuation rate constants include additional processes, such as sorption, dispersion, and advection, they provide an indication of the overall system dynamics. Evaluation of the groundwater data from the former dry cleaner site showed that cosolvent flushing systems can be designed and utilized to aid in the enhancement of biodegradation processes at DNAPL sites.  相似文献   

14.
A permeable reactive barrier (PRB) containing zerovalent iron [Fe(O)] was installed at a former uranium milling site in Monticello, UT. A large-scale column experiment was conducted at the site to test the feasibility of Fe(O) to treat U prior to installing the PRB. Effluents from the field column experiment had pH values near 7.34, moderate decreases in C(IV) and Ca concentrations, and an elevated Fe concentration (27.1 mg/L). In contrast, groundwater exiting the PRB had a pH value of 9.82, decreases in C(IV) and Ca concentrations, and a low concentration of Fe (0.17 mg/L). A geochemical model was used to explain the chemical changes that occurred in both the field column experiment and the PRB. The model simulated the systems by the progressive irreversible dissolution of Fe(O). Modeling results indicated that a longer residence time in the PRB compared with the shorter residence time in the column contributed to the disparate effluent qualities. Prior to modeling, a controlled laboratory column experiment was conducted to help evaluate the dominant chemical mechanisms by which Fe(O) removes U from aqueous solutions. Results of the laboratory column experiment indicated that only a small amount of U could be adsorbed to ferric minerals, and, therefore, this mechanism was not considered in the model.  相似文献   

15.
Although the potential for KMnO4 to destroy chlorinated ethenes in situ was first recognized more than a decade ago, the geochemical processes that accompany the oxidation have not previously been examined. In this study, aqueous KMnO4 solutions (10-30 g/L) were injected into an unconfined sand aquifer contaminated by the dense non-aqueous-phase liquid (DNAPL) tetrachloroethylene (PCE). The effects of the injections were monitored using depth-specific, multilevel groundwater samplers, and continuous cores. Two distinct geochemical zones evolved within several days after injection. In one zone where DNAPL is present, reactions between KMnO4 and dissolved PCE resulted in the release of abundant chloride and hydrogen ions to the water. Calcite and dolomite dissolved, buffering the pH in the range of 5.8-6.5, releasing Ca, Mg, and CO2 to the pore water. In this zone, the aqueous Ca/Cl concentration ratio is close to 5:12, consistent with the following reaction for the oxidation of PCE in a carbonate-rich aquifer: 3C2Cl4 + 5CaCO3(s) + 4KMnO4 + 2H+ --> 11CO2 + 4MnO2(s) + H2O + 12Cl- + 5Ca2+ + 4K+. In addition to Mg from dolomite dissolution, increases in the concentration of Mg as well as Na may result from exchange with K at cation-exchange sites. In the second zone, where lesser amounts of PCE were present, KMnO4 persisted in the aquifer for more than 14 months, and the porewater pH increased graduallyto between 9 and 10 as a resultof reaction between KMnO4 and H2O. A small increase in SO4 concentrations in the zones invaded by KMnO4 suggests that KMnO4 injections caused oxidation of sulfide minerals. There are important benefits of carbonate mineral buffering during DNAPL remediation by in situ oxidation. In a carbonate-buffered system, Mn(VII) is reduced to Mn(IV) and is immobilized in the groundwater by precipitating as insoluble manganese oxide. Energy-dispersive X-ray spectroscopy analyses of the manganese oxide coatings on aquifer mineral grains have detected the impurities Al, Ca, Cl, Cu, Pb, P, K, Si, S, Ti, U, and Zn indicating that, similar to natural systems, precipitation of manganese oxide is accompanied by coprecipitation of other elements. In addition, the consumption of excess KMnO4 by reaction with reduced minerals such as magnetite will be minimized because the rates of these reactions increase with decreasing pH. Aquifer cores collected after the KMnO4 injections exhibit dark brown to black bands of manganese oxide reaction products in sand layers where DNAPL was originally present. Mineralogical investigations indicate that the manganese oxide coatings are uniformly distributed over the mineral grains. Observations of the coatings using transmission electron microscopy indicate that they are on the order of 1 microm thick, and consequently, the decrease in porosity through the formation of the coatings is negligible.  相似文献   

16.
The effects of fluid and porous media properties on dense nonaqueous phase liquid (DNAPL) migration and associated contaminant mass flux generation were evaluated. Relationships between DNAPL mass and solute mass flux were generated by measuring steady-state mass flux following stepwise injection of perchloroethylene (PCE) into flow chambers packed with homogeneous porous media. The effects of fluid properties including density and interfacial tension (IFT), and media properties including grain size and wettability were evaluated by varying the density contrast and interfacial tension properties between PCE and water, and by varying the porous media mean grain diameter and wettability characteristics. Contaminant mass flux was found to increase as grain size decreased, suggesting enhanced lateral and vertical DNAPL spreading with higher fluid entry pressure. Mass flux showed a slight increase as the DNAPL approached neutral buoyancy, likely due to enhanced vertical spreading above the injection point. DNAPL spatial distribution and contaminant mass flux were only minimally affected by IFT and by intermediate-level wettability changes, but were dramatically affected by wettability reversal. The relationship between DNAPL loading and flux generation became more linear as grain size decreased and density contrast between fluids decreased. These results imply that capillary flow characteristics of the porous media and fluid properties will control mass flux generation from source zones.  相似文献   

17.
This paper describes the results of the first field-scale demonstration conducted to evaluate the performance of nanoscale emulsified zero-valent iron (EZVI) injected into the saturated zone to enhance in situ dehalogenation of dense, nonaqueous phase liquids (DNAPLs) containing trichloroethene (TCE). EZVI is an innovative and emerging remediation technology. EZVI is a surfactant-stabilized, biodegradable emulsion that forms emulsion droplets consisting of an oil-liquid membrane surrounding zero-valent iron (ZVI) particles in water. EZVI was injected over a five day period into eight wells in a demonstration test area within a larger DNAPL source area at NASA's Launch Complex 34 (LC34) using a pressure pulse injection method. Soil and groundwater samples were collected before and after treatment and analyzed for volatile organic compounds (VOCs) to evaluate the changes in VOC mass, concentration and mass flux. Significant reductions in TCE soil concentrations (>80%) were observed at four of the six soil sampling locations within 90 days of EZVI injection. Somewhat lower reductions were observed at the other two soil sampling locations where visual observations suggest that most of the EZVI migrated up above the target treatment depth. Significant reductions in TCE groundwater concentrations (57 to 100%) were observed at all depths targeted with EZVI. Groundwater samples from the treatment area also showed significant increases in the concentrations of cis-1,2-dichloroethene (cDCE), vinyl chloride (VC) and ethene. The decrease in concentrations of TCE in soil and groundwater samples following treatment with EZVI is believed to be due to abiotic degradation associated with the ZVI as well as biodegradation enhanced by the presence of the oil and surfactant in the EZVI emulsion.  相似文献   

18.
Experiments to assess metabolic reductive dechlorination (chlororespiration) at high concentration levels consistent with the presence of free-phase tetrachloroethene (PCE) were performed using three PCE-to-cis-1,2-dichloroethene (cis-DCE) dechlorinating pure cultures (Sulfurospirillum multivorans, Desulfuromonas michiganensis strain BB1, and Geobacter lovleyi strain SZ) and Desulfitobacterium sp. strain Viet1, a PCE-to-trichloroethene (TCE) dechlorinating isolate. Despite recent evidence suggesting bacterial PCE-to-cis-DCE dechlorination occurs at or near PCE saturation (0.9-1.2 mM), all cultures tested ceased dechlorinating at approximately 0.54 mM PCE. In the presence of PCE dense nonaqueous phase liquid (DNAPL), strains BB1 and SZ initially dechlorinated, but TCE and cis-DCE production ceased when aqueous PCE concentrations reached inhibitory levels. For S. multivorans, dechlorination proceeded at a rate sufficient to maintain PCE concentrations below inhibitory levels, resulting in continuous cis-DCE production and complete dissolution of the PCE DNAPL. A novel mathematical model, which accounts for loss of dechlorinating activity at inhibitory PCE concentrations, was developed to simultaneously describe PCE-DNAPL dissolution and reductive dechlorination kinetics. The model predicted that conditions corresponding to a bioavailability number (Bn) less than 1.25 x 10(-2) will lead to dissolution enhancement with the tested cultures, while conditions corresponding to a Bn greater than this threshold value can result in accumulation of PCE to inhibitory dissolved-phase levels, limiting PCE transformation and dissolution enhancement. These results suggest that microorganisms incapable of dechlorinating at high PCE concentrations can enhance the dissolution and transformation of PCE from free-phase DNAPL.  相似文献   

19.
Oxidative treatment of trichloroethylene (TCE) in the form of dense nonaqueous-phase liquid (DNAPL) by potassium permanganate (KMnO4) was investigated in a series of batch tests. The study focused on understanding the fundamental mechanisms of oxidative removal of DNAPL TCE by permanganate oxidation. Dissolution experiment for DNAPL TCE has been performed as a control experiment in the absence of KMnO4. DNAPL TCE dissolved into the aqueous phase until it reached the saturation concentration of 1200 mg/L (9.16 x 10(-3) M) at 20 degrees C. The rate of dissolution of DNAPL TCE was proportional to the volume of the DNAPL. In the presence of KMnO4, the experimental results showed that the amount of TCE oxidized during the reaction was increased continuously as [MnO4-] decreased even though the rate decreased as [MnO4-] decreased. It was apparent that more DNAPL TCE was removed with a faster rate for higher initial permanganate concentration. At high permanganate concentration, the aqueous concentration of TCE was kept low and practically constant by the chemical reaction between aqueous TCE and MnO4-. However, as MnO4- was consumed in the system, the aqueous concentration started to increase until it reached solubility. From experimental observation, 1.56-1.78 mol of MnO4- was consumed per mole of TCE oxidized. Furthermore, 2.85-2.98 mol of Cl- was released to the solution per mole of TCE oxidized. Since the complete mineralization of TCE requires 2.0 mol of MnO4- and releases 3 mol of Cl- per mol of TCE oxidized, the observed stoichiometric factors indicated incomplete mineralization of TCE, but nearly complete dechlorination. Enhancement factor due to chemical reaction was quantified experimentally. The enhancement factor was shown to be a function of the molar ratio of MnO4- to TCE in the system, and hence varied during the reaction period.  相似文献   

20.
The effectiveness of in situ treatment using zero-valent iron (ZVI) for nonaqueous phase or significant sediment-associated contaminant mass can be limited by relatively low rates of mass transfer to bring contaminants in contact with the reactive media. For a field test in a trichloroethene (TCE) source area, combining moderate-temperature subsurface electrical resistance heating with in situ ZVI treatment was shown to accelerate TCE treatment by a factor of about 4 based on organic daughter products and a factor about 8 based on chloride concentrations. A mass-discharge-based analysis was used to evaluate reaction, dissolution, and volatilization processes at ambient groundwater temperature (~10 °C) and as temperature was increased up to about 50 °C. Increased reaction and contaminant dissolution were observed with increased temperature, but vapor- or aqueous-phase migration of TCE out of the treatment zone was minimal during the test because reactions maintained low aqueous-phase TCE concentrations.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号