首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In vivo phosphorylation sites in fetal and adult rat tau   总被引:1,自引:0,他引:1  
Fetal tau and tau in paired helical filaments show similar immunoreactivities with several phosphorylation-dependent paired helical filament-polyclonals and monoclonals, suggesting that the two molecules share several distinct phosphorylated epitopes. To make clear the similarities and differences between the two, we have undertaken work to identify the in vivo phosphorylation sites in fetal rat tau. We have approached this problem by identifying phosphopeptides by means of mass spectrometry and sequencing of those phosphopeptides after modification with ethanethiol. Although remarkable heterogeneity was present, fetal tau was found to bear at most 10 phosphates at Ser-189, Ser-190, Ser-193, Ser-226, Ser-387, Ser-395, Thr-172, Thr-222, and, presumably, Ser-391 and Thr-208 (numbering is according to the longest form of rat tau; Kosik, K. S., Orecchio, L. D., Bakalis, S., and Neve, R. L. (1989) Neuron 2, 1389-1397). In contrast, adult rat tau was much less phosphorylated; only Thr-172, Ser-190, Ser-193, Thr-222, and Ser-395 were phosphorylated to a slight-to-moderate extent. All these sites except for Ser-189 and Ser-391 were followed by Pro residues. Thus, tau is an in vivo substrate for proline-directed protein kinase(s), and its phosphorylation state is developmentally regulated.  相似文献   

2.
The microtubule-associated protein tau is abnormally hyperphosphorylated in Alzheimer's disease (AD) brain. To date, 21 phosphorylated sites of tau have been identified. In the present study the levels of phosphorylation at Ser199/Ser202, Thr231/Ser235, Ser262/Ser356 and Ser396/Ser404 of tau in AD brain homogenate and its 100,000 x g supernatant were determined using radioimmuno-dot-blot assay. In homogenate, Ser199/Ser202 and Ser262/Ser356 were phosphorylated to similar level and were more phosphorylated than Thr231 or Ser396/Ser404. In supernatant, there was no significant difference in phosphorylated tau level among the investigated sites except for Thr231/Ser235 which was least phosphorylated. These results suggest that Ser199/Ser202 and Ser262/Ser356 are major sites of phosphorylation of tau in AD brain.  相似文献   

3.
4.
The influence of glycation (non-enzymatic glycosylation) on structural and functional properties of actin of rabbit skeletal muscle and the effects of the natural anti-glycating dipeptide carnosine were studied. Glucose (0.5 M), fructose (0.5 M), and glyceraldehyde (0.05 M) were used as glycating agents. Marked changes in the structural and functional properties were observed in the presence of glyceraldehyde when high-molecular-weight components appear. This was followed by a decrease in the ability of actin to activate myosin ATPase, to polymerize, and to inhibit DNase I. In the presence of 0.05 M carnosine, the quantity of high-molecular-weight products decreased and myosin ATPase activation was retained. Since muscle tissue contains millimolar quantities of carnosine, glycation of actin associated with changes in its properties is evidently more likely to occur in non-muscle cells.  相似文献   

5.
A portion of the neurofibrillary tangles of Alzheimer's disease has the characteristics of cross-linked protein. Because the principal component of these lesions is the microtubule-associated protein tau, and because a major source of cross-linking activity within neurons is supplied by tissue transglutaminase (TGase), it has been postulated that isopeptide bond formation is a major posttranslational modification leading to the formation of insoluble neurofibrillary tangles. Here we have mapped the sites on two isoforms of human tau protein (tau23 and tau40) capable of participating in human TGase-mediated isopeptide bond formation. Using dansyl-labeled fluorescent probes, it was shown that eight Gln residues can function as amine acceptor residues, with two major sites being Gln351 and Gln424. In addition, 10 Lys residues were identified as amine donors, most of which are clustered adjacent to the microtubule-binding repeats of tau in regions known to be solvent accessible in filamentous tau. The distribution of amine donors correlated closely with that of Arg residues, suggesting a link between neighboring positive charge and the TGase selectivity for donor sites in the protein substrate. Apart from revealing the sites that can be cross-linked during the TGase-catalyzed assembly of tau filaments, the results suggest a topography for the tau monomers so assembled.  相似文献   

6.
2,3-Bisphosphoglycerate mutase (BPGM) [EC 5.4.2.4] is a multifunctional enzyme that catalyzes both the synthesis and the degradation of 2,3-diphosphoglycerate (2,3-DPG) and contains three types of activities in that it functions as a 2,3-DPG synthetase, a phosphoglycerate mutase and a 2,3-DPG phosphatase. In humans, BPGM occurs only in erythrocytes and plays a pivotal role in the dissociation of oxygen from hemoglobin via 2,3-DPG. The present study shows that the specific activity of BPGM in erythrocytes of diabetic patients is decreased, compared to normal controls as judged by 2,3-DPG synthetase activity and immunoreactive contents. To understand the mechanism by which the enzyme is inactivated, the enzyme was purified from pooled erythrocytes from diabetic patients and subjected to a boronate affinity column. The flow through fraction was active while the bound fraction was completely inactive. The bound fraction was reactive to an anti-hexitollysine antibody, indicating that the enzyme had undergone glycation and inactivation. The primary glycated site of the enzyme was found to be Lys158 as judged by amino acid sequencing and the reactivity with an anti-hexitollysine IgG, after reverse-phase HPLC of the lysyl-endopeptidase-digested peptides. Extensive glycation of recombinant BPGM in vitro indicated that the glycation sites were Lys2, Lys4, Lys17, Lys42, Lys158, and Lys196. From these results, the loss of enzymatic activity appears to be due to the glycation of Lys158 which may be located in the vicinity of the substrate binding site.  相似文献   

7.
Tau protein is a phosphorylated neuronal microtubule-associated protein. Tau protein is also present in the major pathological lesions of Alzheimer's disease in an insoluble hyperphosphorylated state as paired helical filaments (PHFs). We have investigated the phosphorylation state of control taus and a fragment of PHF-tau. Tau samples were digested with protease, separated by reversed-phase high-performance liquid chromatography, and analyzed by mass spectrometry and Edman microsequencing. The serine homologous with S404 of human tau 441 was phosphorylated on bovine and porcine tau and up to two phosphates were present on a peptide of amino acids 182-240 of bovine tau (193-251 of human tau 441). The serine within the KSPV motif was not phosphorylated on bovine or porcine tau. PHF-tau fragments, isolated from pronase-treated PHFs encompassed a 93-amino acid region within the microtubule binding domain. Enzymatic digestion and mass spectrometric analysis showed no phosphate was present and a second carboxyl terminus was identified at E380. Antibodies T3P and SMI34, which recognize PHF-tau and peptides phosphorylated at the sequence KSPV, both reacted with bovine and porcine tau even though the KSPV sequence was not phosphorylated. These data indicate that the 93-amino acid sequence of F5.5 tau from PHFs is not phosphorylated, and the serine equivalent to S404 of human tau is phosphorylated in bovine and porcine tau. Antibodies T3P and SMI34 react with phosphorylated epitopes that are not unique to PHF-tau and that are not necessarily at the KSPV site.  相似文献   

8.
In vitro studies were performed to characterize [3H]cocaine binding to dark and light ethnic hair types. In vitro binding to hair was selective, was reversible and increased linearly with increasing hair concentration. Scatchard analyses revealed high-affinity (6-112 nM) and low-affinity (906-4433 nM) binding in hair. Competition studies demonstrated that the potencies of 3beta-(4-bromophenyl)tropane-2beta-carboxylic acid methyl ester, and 5-(4-chlorophenyl)-2,5-dihydro-3H-imidazol[2,1-alpha]isoindole-5-ol and 2beta-carbomethoxy-3beta-(4-fluorophenyl)tropane were similar to or less than that of (-)-cocaine. The potency of (-)-cocaine was 10-fold greater than that of (+)-cocaine at inhibiting radioligand specific binding to hair. Multivariate analysis indicated that significantly greater nonspecific and specific radioligand binding occurred in dark hair than in light hair. Multivariate analysis also demonstrated a significant ethnicity x sex effect on specific and nonspecific binding to hair. Greater radioligand binding occurred in male Africoid hair than in female Africoid hair and in all Caucasoid hair types. Melanin was considered the most likely binding site for cocaine in hair. Typically, the concentration of melanin is much greater in dark than in light hair. Scatchard analysis indicated that dark hair had a 5- to 43-fold greater binding capacity than light hair. Differences in radioligand binding between hair types appeared to be due to differences in the density of binding sites formed by melanin in hair.  相似文献   

9.
We examined the characteristics of [3H]clozapine binding sites in four rat brain regions (frontal cortex, limbic area, hippocampus and striatum) in order to elucidate the pharmacological profile of this unique atypical antipsychotic drug. The specific [3H]clozapine binding was found to be saturable and reversible in all these brain regions. Scatchard analysis of the saturation data indicated that the specific binding consisted of high- and low-affinity components. Displacement experiments showed that the muscarinic cholinergic receptor represented about 50% of [3H]clozapine binding in each brain area. Serotonin 5-HT2 and dopamine D4 receptor binding sites could also be detected by displacement experiments using ketanserin and nemonapride, respectively, in frontal cortex and limbic area, but not in hippocampus or striatum. Alpha-1, alpha-2, histamine H1, dopamine D1, D2, or D3 receptor components could not be determined within the high-affinity [3H]clozapine binding sites in any brain region. It is possible that the atypical property of clozapine may depend on the modulatory effect on dopaminergic function via 5-HT2 receptor blockade and/or may be mediated via D4 receptor blockade in the mesocortical and mesolimbic area.  相似文献   

10.
Several in vivo and in vitro methods for monitoring immunological properties of two allergoids obtained by formaldehyde treatment of ovalbumin (OA) were developed. The calculated molecular weight of allergoids was 80 kD (OA-F1) and 165 kD (OA-F2), respectively. The allergenic activity in vitro of allergoids in mast-cell histamine release assay was 1000 times lower than of OA. Both allergoids showed reduced ability to induce passive cutaneous anaphylaxis in the Sprague-Dawley rats or systemic anaphylaxis in Dunkin-Harley guinea-pigs. The ability of OA and allergoids to bind to the OA-specific IgE antibodies was measured in vivo by the inhibition of passive cutaneous anaphylaxis (PCA-inhibition). Allergoid binding to IgE was 51-66% lower than the native allergen. Moreover, the avidity of OA-specific IgG antibodies, measured by ELISA-inhibition, for allergoids and allergen was of the same order. Allergoids induced a different pattern of humoral immune response from that, induced by the native allergen. Thus, after immunization of BALB/c mouse, both allergoids induced a higher production of IgG and a lower production of IgE than OA, only OA-F2 induced a lower production of IgG1. The differences in the IgA response to the immunogens was not significant. Delayed hypersensitivity studies in the BALB/c mouse showed that allergoids were 5- to 12-times less effective in inducing a cell-mediated immune response than OA. The present study provides a battery of immunological methods for preclinical testing of modified allergens.  相似文献   

11.
12.
Paired helical filaments (PHFs) are the structural constituents of neurofibrillary tangles in Alzheimer's disease and are composed of hyperphosphorylated forms of the microtubule-associated protein tau (PHF-tau). Pathological hyperphosphorylation of tau is believed to be an important contributor to the destabilisation of microtubules and their subsequent disappearance from tangle-bearing neurons in Alzheimer's disease, making elucidation of the mechanisms that regulate tau phosphorylation an important research goal. Thus, it is essential to identify, preferably by direct sequencing, all of the sites in PHF-tau that are phosphorylated, a task that is incomplete because of the difficulty to date of purifying insoluble PHF-tau to homogeneity and in sufficient quantities for structural analysis. Here we describe the solubilisation of PHF-tau followed by its purification by Mono Q chromatography and reversed-phase HPLC. Phosphopeptides from proteolytically digested PHF-tau were sequenced by nanoelectrospray mass spectrometry. We identified 22 phosphorylation sites in PHF-tau, including five sites not previously identified. The combination of our new data with previous reports shows that PHF-tau can be phosphorylated on at least 25 different sites.  相似文献   

13.
A systematic approach to the clinical history, physical, and arthroscopic examination of patellofemoral disorders will lead to improved diagnostic accuracy and clinical treatment success. We review important aspects of physical and arthroscopic examination of patellofemoral disorders Basic and advanced physical examination techniques are presented, and their clinical significance is reviewed. Arthroscopic examination of the patellofemoral joint is used as an adjunct to physical examination to evaluate chondral lesions of the patella and femoral sulcus and to visualize patella tracking. Techniques to assess patellar tracking and the integrity of patellar restraints and to grade chondral lesions are outlined. Utilization of these techniques will improve clinical studies on the treatment of patellofemoral disorders.  相似文献   

14.
Isoforms of CD44 are differentially modified by the glycosaminoglycans (GAGs) chondroitin sulfate (CS), heparan sulfate (HS), and keratan sulfate. GAG assembly occurs at serines followed by glycines (SG), but not all SG are utilized. Seven SG motifs are distributed in five CD44 exons, and in this paper we identify the HS and CS assembly sites that are utilized in CD44. Not all the CD44 SG sites are modified. The SGSG motif in CD44 exon V3 is the only HS assembly site; this site is also modified with CS. HS and CS attachment at that site was eliminated by mutation of the serines in the V3 motif to alanine (AGAG). Exon E5 is the only other CD44 exon that supports GAG assembly and is modified with CS. Using a number of recombinant CD44 protein fragments we show herein that the eight amino acids located downstream of the SGSG site in V3 are responsible for the specific addition of HS to this site. If the eight amino acids located downstream from the first SG site in CD44 exon E5 are exchanged with those located downstream of the SGSG site in exon V3, the SG site in E5 becomes modified with HS and CS. Likewise if the eight amino acids found downstream from the first SG in E5 are placed downstream from the SGSG in V3, this site is modified with CS but not HS. We also show that these sequences cannot direct the modification of CD44 with HS from a distance. Constructs containing CD44 exon V3 in which the SGSG motif was mutated to AGAG were not modified with HS even though they contained other SG motifs. Thus, a number of sequence and structural requirements that dictate GAG synthesis on CD44 have been identified.  相似文献   

15.
16.
The receptor for advanced glycation end products, RAGE, is a member of the immunoglobulin superfamily of cell surface molecules differentially expressed on a range of cell types. Ligation of RAGE perturbs homeostatic mechanisms and, potentially, provides a basis for cellular dysfunction in pathologic situations in which its ligands accumulate. To understand factors underlying RAGE expression, we cloned the 5'-flanking region of the RAGE gene and characterized putative regulatory motifs. Analysis of the putative promoter region revealed the presence of three potential NF-kappaB-like and two SP1 binding sites. Transient transfection of vascular endothelial and smooth muscle cells using chimeric 5'-deletion constructs linked to luciferase reporter revealed that the region -1543/-587 contributed importantly to both basal and stimulated expression of the RAGE gene. This region of the RAGE gene contained three putative NF-kappaB-like binding sites and was responsible for increased luciferase activity observed when endothelial or smooth muscle cells were stimulated with lipopolysaccharide. DNase I footprinting assays and electrophoretic mobility shift assay revealed that two of the three NF-kappaB-like binding sites (1 and 2) were likely functional and responsive to stimuli. Upon simultaneous mutation of NF-kappaB-like sites 1 and 2, both basal promoter expression and response to stimulation with LPS, as measured by relative luciferase activity, were significantly diminished. These results point to NF-kappaB-dependent mechanisms regulating cellular expression of RAGE and suggest a means of linking RAGE to the inflammatory response.  相似文献   

17.
In contrast to conventional view that glucose is the sole glycating agent, ascorbate has now emerged as a potential precursor of advanced glycation products in lenses during cataractogenesis, owing to the high concentration present in human lens. The effects of high hexose environment in vitro and in vivo on the disruption of redox equilibrium of ascorbate (ASA) to dehydroascorbate (DHA), which is required for ascorbate-mediated crystallin modification by the Maillard reaction during cataractogenesis were examined. Organ culture experiments were performed with rat lenses that were first exposed to high galactose levels in vitro and in vivo and then incubated with 1-14C-labeled ASA, DHA or DKG (2,3-diketogulonic acid). Formation of ASA degradation products as a function of time was assessed by radiometric TLC method. Upon incubation with ASA or DHA, an elevated level of the degradation product, DKG, was detected in lenses exposed to galactose in vivo and in vitro. ASA uptake was significantly enhanced in the galactosemic lenses as compared to controls (P = 0.01). Regeneration of ASA from DHA in both galactose treated and galactosemic lenses was impaired when compared to control lens which completely converted DHA from the medium into ASA. Surprisingly, the galactose exposed lenses showed enhanced permeability to DKG which was picked up readily from the medium in contrast to normal healthy lenses which remained impermeable to DKG. Galactose exposed lenses both in vitro and in vivo showed a 5-9-fold increase in crystallin bound Schiff base-linked radioactivity when incubated with 1-14C-labeled ASA or DHA. As a preamble to the question of whether lens pigmentation predisposes towards ascorbate oxidation, lens homogenate from normal young and old pigmented cataractous lenses were incubated with [1-14C]ASA. After 2 days, ASA levels were found to have decreased by 74% and DKG levels increased by 48% in brunescent lens as compared to the young lens. These data demonstrated that profound abnormalities in ASA metabolism exist in lenses exposed to a high sugar environment suggestive of a breakdown of the redox equilibrium of ASA to DHA and a loss of membrane permeability barrier for DKG. The latter would further contribute toward a ASA-catalysed Maillard reaction in the redox impaired lens.  相似文献   

18.
The interaction between tubulin subunits and microtubule-associated proteins (MAPs) such as tau is fundamental for microtubule structure and function. Previous work has suggested that the "microtubule binding domain" of tau (composed of three or four imperfect 18-amino acid repeats, separated by 13- or 14-amino acid inter-repeat regions) can bind to the C-terminal ends of both alpha and beta tubulin monomers. Here, using covalent cross-linking strategies, we demonstrate that there are two distinct tau cross-linking sites (designated as "C-terminal" and "internal") on each alpha and beta tubulin monomer. The C-terminal tau cross-linking site is located within the 12 C-terminal amino acids of both alpha and beta tubulin, while the internal tau cross-linking site is located within the C-terminal one-third of alpha and beta tubulin but not within the last 12 amino acids. In addition, we show that tau cross-links to the C-terminal site via its repeat 1 and/or the R1-R2 inter-repeat. The cross-linking of tau to the internal site is mediated by some subset of its other repeat units. Integrating these and earlier data with the 3.7 A resolution model of the alphabeta tubulin dimer recently presented by E. Nogales et al. [(1998), Nature 391, 199-203], we propose a new model for the tau-microtubule interaction.  相似文献   

19.
20.
In this study, we show that oligodendrocyte differentiation is powerfully inhibited by activation of the Notch pathway. Oligodendrocytes and their precursors in the developing rat optic nerve express Notch1 receptors and, at the same time, retinal ganglion cells express Jagged1, a ligand of the Notch1 receptor, along their axons. Jagged1 expression is developmentally regulated, decreasing with a time course that parallels myelination in the optic nerve. These results suggest that the timing of oligodendrocyte differentiation and myelination is controlled by the Notch pathway and raise the question of whether localization of myelination is controlled by this pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号