首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The presence of rigid inclusions in a powder compact leads to a reduction in the densification rate of the compact and may also lead to processing defects. In this paper, the densification rate and the constitutive parameters of both homogeneous YBa2Cu3O6+ x and composite powder compacts (YBa2Cu3O6+ x powder with 10 vol% dense inclusions of YBa2Cu3O6+ x ) are reported. A small amount of liquid phase, which formed during sintering, was present in the samples. However, even with the presence of a liquid phase, the addition of inclusions still reduces the densification rate of the composite and increases its viscosity. The results have been compared with a published analysis of the problem using measured values of the constitutive parameters. Both the viscosity and viscous Poisson's ratio of the porous body have been measured.  相似文献   

2.
Precipitation of TiO2 occurs during the sintering of SrTiO3 with V2O5 added as a liquid-phase sintering agent. Satisfactory densification can be obtained at 1250°C when using a high content of V2O5 during sintering. However, a microstructure of fine grains and large pores results along with the precipitation of TiO2. The precipitation of TiO2 can be repressed by the addition of excess SrO. A well-sintered microstructure with superior densification can thus be obtained at 125O°C from specimens sintered with a low content of V2O5 and an appropriate amount of excess SrO.  相似文献   

3.
The densification behavior of Al2O3-MgO (0.1 wt%) has been studied in O2 and N2 atmospheres. Powder compacts have been sintered at 1600°C for 0.5 to 8 h. For some specimens the sintering atmosphere has been changed after 30 min of sintering. Irrespective of sintering atmosphere, sintered densities are approximately the same up to 99% relative density, implying that the capillary pressure effect dominates the atmosphere effect for most of the densification stage. During extended sintering treatment the density of specimens sintered in O2 becomes higher than that in N2. When the sintering atmosphere is changed from O2 to N2, enhanced densification results, and vice versa. Such an effect of sintering atmosphere is explained by the diffusiveness of gases entrapped in pores, as well as by oxygen potential differences inside and outside of the specimen. Differences in grain growth rate in various atmospheres are discussed on the basis of different densification rates.  相似文献   

4.
Composite densification was studied by performing slip casting and sintering experiments on an Al2O3 matrix and Si3N4 whisker system. Even though all the slip-cast powder compacts exhibited high green densities (up to 70% of the theoretical) and narrow pore-size distribution (pore radius around 15 to 30 nm), significant differential densification on a microscopic scale was found due to the existence of local whisker agglomeration. The inhomogeneous whisker distribution resulted in a binary mixture of large and small pores in the sintered composites, in which whisker-associated flaws remained stable even after prolonged sintering. The sintered microstructures showed that the spatial distribution as well as the volume fraction of the Si3N4 affect composite densification. Inhomogeneous whisker distribution dominated the complete densification of the composites.  相似文献   

5.
The reaction sintering of equimolar mixtures of ZnO and A12O3 powders was investigated as a function of primary processing parameters such as the temperature, heating rate, green density, and particle size. The powder mixtures were prepared by two different methods. In one method, the ZnO and A12O3 powders were ball-milled. In the other method, the ZnO powder was chemically precipitated onto the A12O3 particles dispersed in a solution of zinc chloride. The sintering characteristics of the compacted powders prepared by each method were compared with those for a prereacted, single-phase powder of zinc aluminate, ZnAl2O4. The chemical reaction between ZnO and A12O3 occurred prior to densification of the powder compact and was accompanied by fairly large expansion. The mixing procedure had a significant effect on the densification rate during reaction sintering. The densification rate of the compact formed from the ball-milled powder was strongly inhibited compared to that for the single-phase ZnAl2O4 powder. However, the densification rate of the compact formed from the chemically precipitated mixture was almost identical to that for the ZnAl2O4 powder. The difference in sintering between the ball-milled mixture and the chemically precipitated mixture is interpreted in terms of differences in the microstructural uniformity of the initial powder compacts resulting from the different preparation procedures.  相似文献   

6.
Conventional ramp-and-hold sintering with a wide range of heating rates was conducted on submicrometer and nanocrystalline ZrO2–3 mol% Y2O3 powder compacts. Although rapid heating rates have been reported to produce high density/fine grain size products for many submicrometer and smaller starting powders, the application of this technique to ZrO2–3 mol% Y2O3 produced mixed results. In the case of submicrometer ZrO2–3 mol% Y2O3, neither densification nor grain growth was affected by the heating rate used. In the case of nanocrystalline ZrO2–3 mol% Y2O3, fast heating rates severely retarded densiflcation and had a minimal effect on grain growth. The large adverse effect of fast heating rates on the densification of the nanocrystalline powder was traced to a thermal gradient/differential densification effect. Microstructural evidence suggests that the rate of densification greatly exceeded the rate of heat transfer in this material; consequently, the sample interior was not able to densify before being geometrically constrained by a fully dense shell which formed at the sample exterior. This finding implies that rapid rate sintering will meet severe practical constraints in the manufacture of bulk nanocrystalline ZrO2–3 mol% Y2O3 specimens.  相似文献   

7.
A study has been conducted on the sintering of a ceramic ferrite having the composition (Cu0.25Ni0.25Zn0.50)Fe2O4. The study analyzes the evolution of ferrite relative to density and microstructure with peak sintering temperature and dwell time at peak temperature. The densification and grain-growth rates are correlated with average grain size, relative density, and temperature. Corresponding rate-controlling diffusion mechanisms are proposed.  相似文献   

8.
Bi2Sr2CaCu2O8 was prepared using the mixed oxide-carbonate method and sintered at temperatures ranging from 850° to 911°C. The samples were characterized for density, mechanical strength, phase composition, microstructure, and superconducting transition temperatures. A unique retrograde densification characteristic is demonstrated in the temperature range 850° to 890°C whereby the material first becomes less dense as the sintering temperature is raised, and only in a narrow temperature range from 900° to 905°C does the material densify then with the formation of a liquid phase. The retrograde densification mechanism is shown to be that of the formation of thin platelike crystallites which grow in a randomly oriented fashion, thus pushing the structure apart. This retrograde densification, coupled with a narrow sintering range overlapping the melting temperature, makes this compound a difficult one to process.  相似文献   

9.
Si3N4 compacts, containing ≅7 wt% of both BeSiN2 and SiO2 as densification aids, can be reproducibly sintered to relative densities >99% by a gas-pressure sintering process. Nearly all densification takes place via liquid-phase sintering of transformed β-Si3N4 grains at T =1800° to 2000°C. Compacts with high density are produced by first sintering to the closed-pore stage (≅92% relative density) in 2.1 MPa (20 atm) of N2 pressure at 2000°C and then increasing the N2 pressure to 7.1 MPa (70 atm) where rapid densification proceeds at T = 1800° to 2000°C. The experimental density results are interpreted in terms of theoretical arguments concerning the growth (coalescence) of gas-filled pores and gas solubility effects. Complex chemical reactions apparently occur at high temperatures and are probably responsible for incomplete understanding of some of the experimental data.  相似文献   

10.
This paper deals with the densification and phase transformation during pressureless sintering of Si3N4 with LiYO2 as the sintering additive. The dilatometric shrinkage data show that the first Li2O- rich liquid forms as low as 1250°C, resulting in a significant reduction of sintering temperature. On sintering at 1500°C the bulk density increases to more than 90% of the theoretical density with only minor phase transformation from α-Si3N4 to β-Si3N4 taking place. At 1600°C the secondary phase has been completely converted into a glassy phase and total conversion of α-Si3N4 to β-Si3N4 takes place. The grain growth is anisotropic, leading to a microstructure which has potential for enhanced fracture toughness. Li2O evaporates during sintering. Thus, the liquid phase is transient and the final material might have promising mechanical properties as well as promising high-temperature properties despite the low sintering temperature. The results show that the Li2O−Y2O3 system can provide very effective low-temperature sintering additives for silicon nitride.  相似文献   

11.
The effect of the addition of Bi2O3 on the densification, low-temperature sintering, and electromagnetic properties of Z-type planar hexaferrite was investigated. The results show that Bi2O3 additives can improve the densification and promote low-temperature sintering of Z-type hexaferrite prepared by a solid-state reaction method. The presence of Bi2O3 in the grain boundaries and the generation of Fe2+ degrade the initial permeability of the samples but make the quality factor and cut-off frequency increase. Various possible mechanisms involved in generating these effects were also discussed.  相似文献   

12.
Preparation of dense and phase-pure Ba2Ti9O20 is generally difficult using solid-state reaction, since there are several thermodynamically stable compounds in the vicinity of the desired composition and a curvature of Ba2Ti9O20 equilibrium phase boundary in the BaO–TiO2 system at high temperatures. In this study, the effects of B2O3 on the densification, microstructural evolution, and phase stability of Ba2Ti9O20 were investigated. It was found that the densification of Ba2Ti9O20 sintered with B2O3 was promoted by the transient liquid phase formed at 840°C. At sintering temperatures higher than 1100°C, the solid-state sintering became dominant because of the evaporation of B2O3. With the addition of 5 wt% B2O3, the ceramic yielded a pure Ba2Ti9O20 phase at sintering temperatures as low as 900°C, without any solid solution additive such as SnO2 or ZrO2. The facilities of B2O3 addition to the stability of Ba2Ti9O20 are apparently due to the eutectic liquid phase which accelerates the migration of reactant species.  相似文献   

13.
A possibility to produce microwave (MW) dielectric materials by liquid-phase sintering of fine particles was investigated. Zn3Nb2O8 powders with a grain size 50–300 nm were obtained by the thermal decomposition of freeze-dried Zn–Nb hydroxides or frozen oxalate solutions. The crystallization of Zn3Nb2O8 from amorphous decomposition products was often accompanied by the simultaneous formation of ZnNb2O6. Maximum sintering activity was observed for single-phase crystalline Zn3Nb2O8 powders obtained at the lowest temperature. The sintering of as-obtained powders with CuO–V2O5 sintering aids results in producing MW dielectric ceramics with a density 93%–97% of the theoretical, and a Q × f product up to 36 000 GHz at sintering temperature ( T s)≥680°C. The high level of MW dielectric properties of ceramics was ensured by intensive grain growth during the densification and the thermal processing of ceramics.  相似文献   

14.
The densification of non-oxide ceramics like titanium boride (TiB2) has always been a major challenge. The use of metallic binders to obtain a high density in liquid phase-sintered borides is investigated and reported. However, a non-metallic sintering additive needs to be used to obtain dense borides for high-temperature applications. This contribution, for the first time, reports the sintering, microstructure, and properties of TiB2 materials densified using a MoSi2 sinter-additive. The densification experiments were carried out using a hot-pressing and pressureless sintering route. The binderless densification of monolithic TiB2 to 98% theoretical density with 2–5 μm grain size was achieved by hot pressing at 1800°C for 1 h in vacuum. The addition of 10–20 wt% MoSi2 enables us to achieve 97%–99%ρth in the composites at 1700°C under similar hot-pressing conditions. The densification mechanism is dominated by liquid-phase sintering in the presence of TiSi2. In the pressureless sintering route, a maximum of 90%ρth is achieved after sintering at 1900°C for 2 h in an (Ar+H2) atmosphere. The hot-pressed TiB2–10 wt% MoSi2 composites exhibit high Vickers hardness (∼26–27 GPa) and modest indentation toughness (∼4–5 MPa·m1/2).  相似文献   

15.
B6O is a possible candidate of superhard materials with a hardness of 45 GPa measured on single crystals. Up to now, densification of these materials was only possible at high pressure. However, recently it was found that Al2O3 can be utilized as an effective sintering additive, similar to the addition of Y2O3/Al2O3 that was used in this work. The densification behavior of the material as a function of applied pressure, its microstructure evolution, and the resulting mechanical properties were investigated. A strong dependence of the densification with increasing pressure was found. The material revealed characteristic triple junctions filled with amorphous residue composed of B2O3, Al2O3, and Y2O3, while no amorphous grain-boundary films were observed along internal interfaces. Mechanical testing revealed on average a hardness of 33 GPa, a fracture toughness of 4 MPa·m1/2, and a strength value of 520 MPa.  相似文献   

16.
Sintering, crystallization, microstructure, and thermal expansion of Li2O·Al2O3·4SiO2 glass-ceramics doped with B2O3, P2O5, or (B2O3+ P2O5) have been investigated. On heating the glass powder compacts, the glassy phase first crystallized into high-quartz s.s., which transformed into β-spodumene after the crystallization process was essentially complete. The effects of dopants on the crystallization of glass to high-quartz s.s. and the subsequent transformation of high-quartz s.s. to β-spodumene were discussed. The major densification occurred only in the early stage of sintering time due to the rapid crystallization. All dopants were found to promote the densification of the glass powders. The effect of doping on the densification can fairly well be explained by the crystallization tendency. All samples heated to 950°C exhibited a negative coefficient of thermal expansion ranging from about −4.7 × 10-6 to −0.1 × 10-6 K-1. Codoping of B2O3 and P2O5 resulted in the highest densification and an extremely low coefficient of thermal expansion.  相似文献   

17.
Effects of a liquid-phase-sintering aid, BaCuO2+ CuO (BCC), on densification and microwave dielectric properties of (Zr0.8Sn0.2)TiO4 (ZST) ceramics have been investigated. The densification kinetics of ZST are greatly enhanced with the presence of 2.5–5 wt% BCC, but become retarded when the amount of BCC increases further. At a given BCC content, moreover, slower densification kinetics are observed with a larger particle size of ZST. The above results are attributed to a chemical reaction taking place at the interface of BCC/ZST during firing. The ZST dissolves into BCC, forming crystalline phases of ZrO2, SnO2, CuO, and BaTi8O16 which reduce the amount of BCC flux available for liquid-phase sintering. The crystallization kinetics become more significant, compared with densification kinetics, with increasing the amount of BCC and the particle sizes of ZST. For samples with 2.5–5 wt% BCC, a high relative sintered density is obtained at 1000°C and the resulting microwave ceramics have a dielectric constant and a value of Q at 7 GHz in the ranges of 35–38 and 2800–5000, respectively.  相似文献   

18.
The sintering of a composite of MgO–B2O3–Al2O3 glass and Al2O3 filler is terminated due to the crystallization of Al4B2O9 in the glass. The densification of a composite of MgO–B2O3–Al2O3 glass and Al2O3 filler using pressureless sintering was accomplished by lowering the sintering temperature of the composite. The sintering temperature was lowered by the addition of small amounts of alkali metal oxides to the MgO–B2O3–Al2O3 glass system. The resultant composite has a four-point bending strength of 280 MPa, a coefficient of thermal expansion (RT—200°C) of 4.4 × 10−6 K−1, a dielectric constant of 6.0 at 1 MHz, porosity of approximately 1%, and moisture resistance.  相似文献   

19.
The effect of rare-earth oxide additives on the densification of silicon nitride by pressureless sintering at 1600° to 1700°C and by gas pressure sintering under 10 MPa of N2 at 1800° to 2000°C was studied. When a single-component oxide, such as CeO2, Nd2O3, La2O3, Sm2O3, or Y2O3, was used as an additive, the sintering temperature required to reach approximate theoretical density became higher as the melting temperature of the oxide increased. When a mixed oxide additive, such as Y2O3–Ln2O3 (Ln=Ce, Nd, La, Sm), was used, higher densification was achieved below 2000°C because of a lower liquid formation temperature. The sinterability of silicon nitride ceramics with the addition of rare-earth oxides is discussed in relation to the additive compositions.  相似文献   

20.
The effect of additives on the sintering of ThO2 and ThO2-Y2O3 compacts and loose powders was studied by isothermal shrinkage measurements and by scanning electron micrography. Small amounts of the oxides of Ni, Zn, Co, and Cu reduced the sintering temperature. The behavior of NiO at a concentration of 0.8 wt% (2.5 mol%) was studied in detail and found to yield high-density bodies at temperatures below 1500°C. The presence of Y2O3 as a separate phase increases the rate of sintering of ThO2, but smaller amounts of NiO are much more potent. The major portion of the densification occurs very rapidly and is followed by a much slower sintering process typical of volume diffusion. The fast early shrinkage may be caused by the capillary forces of a liquid, but since no evidence of melting was found, a solid-state mechanism may be responsible.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号