首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Hybrid particles with a core–shell structure have been obtained in the form of monodisperse spherical mesoporous silica particles filled with magnetite and covered with a mesoporous silica shell functionalized with a luminescent dye. The particles have a small root-mean-square size deviation (at most 10%), possess a specific surface area and specific pore volume of up to 250 m2/g and 0.15 cm3/g, respectively, and exhibit visible luminescence peaked at a wavelength of 530 nm. The particles can be used in diagnostics of cancerous diseases, serving simultaneously for therapeutic (magnetic hyperthermia and targeted drug delivery) and diagnostic (contrast agent for magnetic-resonance tomography and luminescent marker) purposes.  相似文献   

2.
Rhodamine (Rh6G) dye-silica core-shell nanoparticles (DSCSNPs) have been prepared by the controlled hydrolysis and condensation of single silica precursor tetraethylorthosilicate (TEOS) using the sol-gel method. Scanning electron microscopy, transmission electron microscopy and energy dispersive X-ray analysis reveal that dye molecules are entrapped in silica (SiO2) shell resulting into core-shell particles of ∼30 nm diameter. These particles are also characterized by X-ray diffraction and Fourier transforms infrared spectroscopy. The results indicate that core-shell particles are all in spherical shape and have a narrow size distribution. The fluorescent and optical properties of core-shell particles have been investigated using fluorescence and UV-Visible absorption spectra. The photoluminescence in solid or liquid medium occurs at the same wavelength. The SiO2 shell restricts the leakage and photobleaching of dye efficiently. These core-shell nanoparticles are found to be highly luminescent and stable.  相似文献   

3.
We present a new approach for the fabrication of thermoresponsive polymer microcapsules with mobile magnetic cores that undergo a volume phase-transition upon changing the temperature and are collected under an external magnetic field. We have prepared organic/inorganic composite microspheres with a well-defined core-shell structure that are composed of a crosslinked poly(N-isopropylacrylamide) (PNIPAM) shell and silica cores dotted centrally by magnetite nanoparticles. Since the infiltration of template-decomposed products is dependent on the permeability of PNIPAM shells triggered by changes of exterior temperature, the silica layer sandwiched between the magnetic core and the PNIPAM shell was quantitatively removed to generate PNIPAM microcapsules with mobile magnetic cores by treatment with aqueous NaOH solution. For development of the desired multifunctional microcapsules, modification of the unetched silica surface interiors can be realized by treatment with a silane coupling agent containing functional groups that can easily bind to catalysts, enzymes, or labeling molecules. Herein, fluorescein isothiocyanate (FITC), which is a common organic dye, is attached to the insides of the mobile magnetic cores to give PNIPAM microcapsules with FITC-labeled magnetic cores. In this system, it can be expected that an extension of the functionalization of the cavity properties of smart polymer microcapsules is to immobilize other target molecules onto the mobile cores in order to introduce other desired functions in the hollow cage.  相似文献   

4.
Although (oxy)hydroxides generated by electrochemical reconstruction (EC-reconstruction) of transition-metal catalysts exhibit highly catalytic activities, the amorphous nature fundamentally impedes the electrochemical kinetics due to its poor electrical conductivity. Here, EC-reconstructed NiFe/NiFeOOH core/shell nanoparticles in highly conductive carbon matrix based on the pulsed laser deposition prepared NiFe nanoparticles is successfully confined. Electrochemical characterizations and first-principles calculations demonstrate that the reconstructed NiFe/NiFeOOH core/shell nanoparticles exhibit high oxygen evolution reaction (OER) electrocatalytic activity (a low overpotential of 342.2 mV for 10 mA cm−2) and remarkable durability due to the efficient charge transfer in the highly conductive confined heterostructure. More importantly, benefit from the superparamagnetic nature of the reconstructed NiFe/NiFeOOH core/shell nanoparticles, a large OER improvement is achieved (an ultralow overpotential of 209.2 mV for 10 mA cm−2) with an alternating magnetic field stimulation. Such OER improvement can be attributed to the Néel relaxation related magnetic heating effect functionalized superparamagnetic NiFe cores, which are generally underutilized in reconstructed core/shell nanoparticles. This work demonstrates that the designed superparamagnetic core/shell nanoparticles, combined with the large improvement by magnetic heating effect, are expected to be highly efficient OER catalysts along with the confined structure guaranteed high conductivity and catalytic stability.  相似文献   

5.
Multifunctional nanoparticles are synthesized for both pH‐triggered drug release and imaging with radioluminescence, upconversion luminescent, and magnetic resonance imaging (MRI). The particles have a yolk‐in‐shell morphology, with a radioluminescent core, an upconverting shell, and a hollow region between the core and shell for loading drugs. They are synthesized by controlled encapsulation of a radioluminescent nanophosphor yolk in a silica shell, partial etching of the yolk in acid, and encapsulation of the silica with an upconverting luminescent shell. Metroxantrone, a chemotherapy drug, was loaded into the hollow space between X‐ray phosphor yolk and up‐conversion phosphor shell through pores in the shell. To encapsulate the drug and control the release rate, the nanoparticles are coated with pH‐responsive biocompatible polyelectrolyte layers of charged hyaluronic acid sodium salt and chitosan. The nanophosphors display bright luminescence under X‐ray, blue light (480 nm), and near infrared light (980 nm). They also served as T1 and T2 MRI contrast agents with relaxivities of 3.5 mM?1 s?1 (r1) and 64 mM?1s?1 (r2). These multifunctional nanocapsules have applications in controlled drug delivery and multimodal imaging.  相似文献   

6.
A new kind of superparamagnetic luminescent nanocomposite particles has been synthesized using a modified Stöber method combined with an electrostatic assembly process. Fe3O4 superparamagnetic nanoparticles were coated with uniform silica shell, and then 3-aminopropyltrimethoxysilane was used to terminate the silica surface with amino groups. Finally, negatively charged CdSe quantum dots (QDs) were assembled onto the surface of the amino-terminated SiO2/Fe3O4 nanoparticles through electrostatic interactions. X-ray diffraction (XRD), transmission electron microscopy (TEM), microelectrophoresis, UV-vis absorption and emission spectroscopy and magnetometry were applied to characterize the nanocomposite particles. Dense CdSe QDs were immobilized on the silica surface. The thickness of silica shell was about 35 nm and the particle size of the final products was about 100 nm. The particles exhibited favorable superparamagnetic and photoluminescent properties.  相似文献   

7.
In this paper, we have prepared the fluorescent silica nanoparticles (FSNPs) covalently doped with rhodamine B (RB) dye molecules via 3-aminopropyltriethoxysilane (APTES) in reverse microemulsion method. Then by the cohydrolysis and polymerization of tetraethoxysilane (TEOS) and APTES, the surface of the FSNPs formed another thin silica shell with the functionalized amino groups. The resulting nanoparticles were characterized by infrared (IR) spectrum, transmission electron microscopy (TEM), and spectrofluorimetry. TEM showed that the particles with diameters in the range of 70–500 nm were obtained, with core and shell sizes controlled by varying component content. At the same time, the effect of RB content on the fluorescent properties of the FSNPs was studied, and the results indicated that the fluorescence intensity of the FSNPs could be precisely tuned by varying the doping amount of RB dyes. Finally, the dye leakage was also tested, displaying that RB molecules would not leak out from the silica nanoparticles after dispersing in the aqueous solution.  相似文献   

8.
This paper describes the preparation of nanoparticles composed of a magnetic core surrounded by two successive silica shells embedding two fluorophores, showing uniform nanoparticle size (50-60 nm in diameter) and shape, which allow ratiometric pH measurements in the pH range 5-8. Uncoated iron oxide magnetic nanoparticles (~10 nm in diameter) were formed by the coprecipitation reaction of ferrous and ferric salts. Then, they were added to a water-in-oil microemulsion where the hydrophilic silica shells were obtained through hydrolysis and condensation of tetraethoxyorthosilicate together with the corresponding silylated dye derivatives-a sulforhodamine was embedded in the inner silica shell and used as the reference dye while a pH-sensitive fluorescein was incorporated in the outer shell as the pH indicator. The magnetic nanoparticles were characterized using vibrating sample magnetometry, dynamic light scattering, transmission electron microscopy, x-ray diffraction and Fourier transform infrared spectroscopy. The relationship between the analytical parameter, that is, the ratio of fluorescence between the sensing and reference dyes versus the pH was adjusted to a sigmoidal fit using a Boltzmann type equation giving an apparent pK(a) value of 6.8. The fluorescence intensity of the reference dye did not change significantly (~3.0%) on modifying the pH of the nanoparticle dispersion. Finally, the proposed method was statistically validated against a reference procedure using samples of water and physiological buffer with 2% of horse serum, indicating that there are no significant statistical differences at a 95% confidence level.  相似文献   

9.
Superparamagnetic iron oxide nanoparticles have been used for many years as magnetic resonance imaging (MRI) contrast agents or in drug delivery applications. In this study, a novel approach to prepare magnetic polymeric nanoparticles with magnetic core and polymeric shell using inverse microemulsion polymerization process is reported. Poly(ethyleneglycol) (PEG)-modified superparamagnetic iron oxide nanoparticles with specific shape and size have been prepared inside the aqueous cores of AOT/n-Hexane reverse micelles and characterized by various physicochemical means such as transmission electron microscopy (TEM), infrared spectroscopy, atomic force microscopy (AFM), vibrating sample magnetometry (VSM), and ultraviolet/visible spectroscopy. The inverse microemulsion polymerization of a polymerizable derivative of PEG and a cross-linking agent resulted in a stable hydrophilic polymeric shell of the nanoparticles. The results taken together from TEM and AFM studies showed that the particles are spherical in shape with core-shell structure. The average size of the PEG-modified nanoparticles was found to be around 40-50 nm with narrow size distribution. The magnetic measurement studies revealed the superparamagnetic behavior of the nanoparticles with saturation magnetization values between 45-50 electromagnetic units per gram. The cytotoxicity profile of the nanoparticles on human dermal fibroblasts as measured by standard 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide assay showed that the particles are nontoxic and may be useful for various in vivo and in vitro biomedical applications.  相似文献   

10.
In this article, we report a method for cell recognition of system lupus erythematosus (SLE) patients that uses photostable luminescent nanoparticles as biological labels. The luminescent silica nanoparticles are prepared with a water-in-oil microemulsion (W/O) technique. The silica network is produced by the controlled hydrolysis of tetraethylorthosilicate (TEOS) in water nanodroplets with the initiation of ammonia (NH3.H2O). A luminescent compound, tris(2,2'-bipyridyl)dichlororuthenium(II)hexahydrate [Ru(II)(bpy)3]2+, is doped inside as a luminescent signaling element, and the most appropriate dye concentration for the preparation of the nanoparticles with a size of 28 +/- 4 nm has been determined. The luminescent silica nanoparticles are covalently immobilized with goat anti-human immunoglobulin G (IgG), which can recognize SmIgG+ B lymphocytes. We have used antibody-labeled nanoparticles to recognize target SmIgG+ B lymphocytes isolated from the circulating blood of SLE patients. It has been observed that a bioassay based on fluorescent nanoparticles can identify target cells selectively and efficiently. And fluorescent nanoparticle labels also exhibit high photostability. The experiment results have shown that this cell recognition method was an effective one as further proof of the diagnosis of SLE.  相似文献   

11.
Self-assembled magnetic colloidal suspensions are sought after by material scientists owing to its huge application potential. The biomedical applications of colloidal nanoparticles necessitate that they are biocompatible, non-interacting, monodispersed and hence the synthesis of such nanostructures has great relevance in the realm of nanoscience. Silica-coated superparamagnetic iron oxide nanoparticles based ferrofluids were prepared using polyethylene glycol as carrier fluid by employing a controlled co-precipitation technique followed by a modified sol-gel synthesis. A plausible mechanism for the formation of stable suspension of SiO2-coated Iron Oxide nanoparticles with a size of about 9 nm dispersed in polyethylene glycol (PEG) is proposed. Core-shell nature of the resultant SiO2-Iron Oxide nanocomposite was verified using transmission electron microscopy. Fourier transform-infrared spectroscopy studies were carried out to understand the structure and nature of chemical bonds. The result suggests that Iron Oxide exist in an isolated state inside silica matrix. Moreover, the presence of silanol bonds establishes the hydrophilic nature of silica shell confirming the formation of stable ferrofluid with PEG as carrier fluid. The magnetic characterization reveals the superparamagnetic behavior of the nanoparticles with a rather narrow distribution of blocking temperatures. These properties are not seen in ferrofluids prepared from Iron Oxide nanoparticles without SiO2 coating. The latter suggests the successful tuning of the inter-particle interactions preventing agglomeration of nanoparticles. Cytotoxicity studies on citric acid coated water based ferrofluid and silica-coated PEG-based ferrofluid were evaluated by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium chloride assay and it shows an enhanced compatibility for silica modified nanoparticles.  相似文献   

12.
Hydroxyapatite (HA) with highly ordered three-dimensional pores, whose size is about 300 nm, was prepared by colloidal template method. The effect of the surface modification of silica spheres on the order degree of porous structure was investigated by field emission scanning electron microscopy (FESEM). Then, superparamagnetic Fe3O4 nanoparticles were fabricated via redox reaction, followed by coating with silica via a sol–gel process, in which a certain amount of TEOS was used in order to control the thickness of the silica shell. X-ray diffraction (XRD), transmission electron microscopy (TEM), and magnetometry were applied to characterize the properties. Finally, Fe3O4 magnetic nanoparticles coated with silica were adsorbed in the mesopores of HA with highly ordered three-dimensional pores by capillarity. The influence of dispersing agent on the adsorption results has been studied. Magnetometry was applied to characterize the magnetic properties of superparamagnetic HA. The quantities of adsorbed SiO2/Fe3O4 nanoparticles with core–shell have been compared by variation of saturation magnetization before and after adsorption.  相似文献   

13.
In this paper, we report a method for the recognition of HepG liver cancer cells with the use of a novel fluorescent label based on organic dye-doped fluorescent silica nanoparticles. The novel organic dye-doped silica nanoparticles are prepared with a water-in-oil microemulsion technique. The silica network is produced by the controlled synchronous hydrolysis of tetraethoxysilane and 3-amino-propyltriethoxysilane (APTES). The organic dye fluorescein isothiocyanate is doped inside as a luminescent signaling element, through covalent bonding to the amino group of APTES. The organic dye-doped core-shell nanoparticles are highly luminescent and exhibit minimal dye leaching and excellent photostability. A novel fluorescent label method based on biological fluorescent nanoparticles has been developed. The dye-doped fluorescent silica nanoparticles are covalently immobilized with anti-human liver cancer monoclonal antibody HAb18. We have used antibody-labeled fluorescent nanoparticles to recognize HepG liver cancer cells. It has been observed that the bioassay based on the organic dye-doped nanoparticles can identify the target cells selectively and efficiently. The fluorescent nanoparticle label also exhibits high photostability.  相似文献   

14.
《Materials Letters》2007,61(11-12):2187-2190
SrFe12O19/SiO2 nanocomposites with a core–shell structure have been obtained. The core SrFe12O19 nanoparticles were synthesized by a citrate precursor technique with Fe/Sr ratios of 10.8, and silica was coated on SrFe12O19 forming complete coverage by the controlled hydrolysis and condensation of tetraethyl orthosilicate (TEOS). The composition, morphology and structure of the products were characterized by EDS, XRD, TEM, and IR spectroscopy, respectively. The results indicate that the product has a core–shell structure, which is combined through the chemical bond of Fe–O–Si. The magnetic measurements were carried out on a vibrating sample magnetometer (VSM), and the measurement results indicate the reduction of the magnetization of the SiO2 coated strontium ferrite nanoparticles compared with the uncoated ferrite nanoparticles. High coercivity also shows that the prepared uncoated and coated ferrite nanoparticles are not superparamagnetic.  相似文献   

15.
A room temperature solution process for synthesis of Fe3O4 nanoparticles and their hybrid core shell nanostructures using CdS as the shell material has been described. The as grown particles have been characterised using XRD, Rietveld refinement, high resolution transmission electron microscopy, atomic force microscopy, superconducting quantum interference device, optical absorbance and photoluminescence spectroscopy. A superparamagnetic response revealed from the magnetisation measurements of the as synthesised magnetite nanoparticles was retained even after the growth of the CdS shell. From luminescence and high resolution atomic force microscopy measurements, it is shown that the core–shell structures advantageously combine magnetic as well as fluorescence response with a tendency towards self-organization.  相似文献   

16.
Many types of fluorescent nanoparticles have been investigated as alternatives to conventional organic dyes in biochemistry; magnetic beads also have a long history of biological applications. In this work we apply flame spray pyrolysis in order to engineer a novel type of nanoparticle that has both luminescent and magnetic properties. The particles have magnetic cores of iron oxide doped with cobalt and neodymium and luminescent shells of europium-doped gadolinium oxide (Eu:Gd(2)O(3)). Measurements by vibrating sample magnetometry showed an overall paramagnetic response of these composite particles. Luminescence spectroscopy showed spectra typical of the Eu ion in a Gd(2)O(3) host-a narrow emission peak centred near 615 nm. Our synthesis method offers a low-cost, high-rate synthesis route that enables a wide range of biological applications of magnetic/luminescent core/shell particles. Using these particles we demonstrate a novel immunoassay format with internal luminescent calibration for more precise measurements.  相似文献   

17.
Superparamagnetic nanoparticles of zinc ferrite (ZnFe2O4) were produced by a microwave induced combustion synthesis method. XRD, FT-IR, SEM, VSM and ESR were used for the structural, morphological, and magnetic investigation of the product, respectively. Average particle size of the nanoparticles was estimated by the Schérrer equation using the full-width at half maximum (FWHM) of the most intense XRD peak and found as 41 nm. Magnetization measurements have shown that the samples have a blocking temperature of 72 K which indicates a superparamagnetic behavior. Superparamagnetic resonance (SPR) spectra at room temperature show a broad line with a Landé g-factor, g(eff) approximately 2. We used a theoretical formalism based on a distribution of diameters of the nanoparticles following lognormal proposed by Berger et al. The nanoparticles behave as single magnetic domains with random orientations of magnetic moments which are subject to thermal fluctuations. A Landau-Lifshitz line shape function presents adequate results which are in good agreement with the experimental ones. At high temperatures, the SPR line shape is governed by the core anisotropy and the thermal fluctuations. By decreasing the temperature, the magnetic susceptibility of shell spins increases. As a result of this, the surface spins produce an effective field on the core leading to a decrease of resonance field, B(r). Also, the effective anisotropy increases as the shell spins begin to order. So, the results are interpreted by a simple model, in which each single-domain nanoparticle is considered as a core-shell system, with magneto-crystalline anisotropy on the core and surface anisotropy on the shell.  相似文献   

18.
Carbon-encapsulated iron (Fe@C) nanoparticles with core/shell structure have been successfully synthesized by detonation method, using a homemade composite explosive precursor. The detonation reaction was ignited by a non-electric detonator in nitrogen gas in an explosion vessel. The as-prepared detonation products were characterized by X-ray Diffraction, Transmission electron Microscopy, Raman spectroscopy and X-ray fluorescence. The magnetic behavior of the Fe@C materials was measured by vibrating sample magnetometer. The results showed that the detonation products were made up of the body centered cubic iron core and the graphitic carbon shell, of which the core diameter was in the range of 15–50 nm. Raman spectroscopy indicated that both graphitic and amorphous carbon occured in the outside shell structures. The hysteresis loops showed the as-made Fe@C nanoparticles were of superparamagnetic at 300 K temperature. A detonation reaction mechanism was proposed to explain the growth process of Fe@C nanoparticles based on these results.  相似文献   

19.
Core-shell Ni-Fe@ferrite nanoparticles with an average diameter of 14 nm and shell thickness of 3 nm were synthesized through a redox-transmetalation process. The alloy core and spinel oxide shell were verified by X-ray photoelectron spectroscopy, X-ray diffraction, and transmission electron microscopy. The hydrophobic oleylamine molecules on the surface were replaced by hydrophilic meso-2,3-Dimercaptosuccinic acid to make the nanoparticles to be water-soluble. X-ray diffraction study of the as-prepared core-shell nanoparticles indicates that they remained face centered cubic alloy core and spinel shell form in air. Magnetic measurements indicate that the core-shell nanoparticles exhibit superparamagnetic and exchange bias characteristics at 300 K and 5 K, respectively.  相似文献   

20.
Chen Y  Chi Y  Wen H  Lu Z 《Analytical chemistry》2007,79(3):960-965
A highly luminescent terbium nanoparticle as the biolabel based on the sensitization of a dye molecule was prepared. The luminescent complexes included in the particles were composed of a quinolone-based dye molecule as the light-energy transfer donor and a polyaminocarboxylate-based chelator with excellent water-solubility and a high binding constant for lanthanides. The structure of two functional entities in the single molecule made the complex highly luminescent in aqueous solution. Silica nanoparticles containing terbium complexes were prepared by the reverse microemulsion method. Such a terbium nanoparticle is as bright as about 340 free terbium complexes, and it has a 1.5-ms fluorescence lifetime that enables it to be used in the time-resolved fluorescence assays. The conjugate of the nanoparticle with oligonucleotide was prepared and used to carry out a DNA sandwich hybridization assay based on magnetic microbeads as solid-phase carrier. The experimental results showed that the detection sensitivity with the nanoparticles is more than 100-fold as high as that with dye Fluorescein isothiocyanate (FITC) molecules.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号