首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
美国碳中和运行成功案例——Sheboygan污水处理厂   总被引:3,自引:0,他引:3  
作为美国碳中和运行的榜样,希博伊根(Sheboygan)污水处理厂通过开源与节流并举的技术措施不仅向美国而且也向世界展示了其污水处理能耗基本可以实现自给自足。利用厂外高浓度食品废物与剩余污泥厌氧共消化产生的高甲烷含量生物气进行热电联产(CHP),可产生较多的电和热供运行使用。通过更新变频水泵、鼓风机系统、气流控制阀、加热设备以及相关的自控系统(PLC和SCADA),可以大幅降低运行能耗。到2013年,该厂已实现了产电量与耗电量比值达90%~115%、产热量与耗热量比值达85%~90%的佳绩,已逼近碳中和运行目标。在介绍该厂工艺流程的基础上,重点剖析该厂在能源开源/节流、逼近碳中和运行目标方面的成功经验。  相似文献   

2.
污泥厌氧消化/热电联产是一项重要节能工艺技术,对于提高资源和能源利用效率意义重大。完善的管理是保证污泥消化及热电联产系统稳定高效运行的关键环节。麦岛污水处理厂将Multiflo~?Trio初沉污泥与生物滤池剩余污泥进行混合,形成沼气产率较高的混合污泥,并进行中温厌氧消化,所产沼气进入热电联产系统用于发电及沼气锅炉,回收余热作为污泥消化及厂区采暖热源。10余年来,麦岛污水处理厂的污泥消化及热电联产系统实现了安全、稳定、高效的运行,保证了污泥的资源化、减量化、无害化处理及利用。介绍了青岛麦岛污水处理厂污泥厌氧消化及热电联产的运行情况,探讨如何在污泥消化及热电联产间做好运行管理和调控,使之形成良性循环。  相似文献   

3.
传统活性污泥处理过程是"以能消能"、"污染物转嫁",处理过程能耗高(消耗化石燃料)并排放大量温室气体(GHG);与此同时,污水中COD蕴含的巨大有机化学能(约1.5~1.9k W·h/m~3)远远未被挖掘及利用,未来污水处理的发展方向是朝着营养物、能源及再生水"三厂合一"模式转变。污水处理过程实现"能量平衡"、"碳中和"的运行关键一是厌氧消化剩余污泥;二是在前端最大程度上实现对进水中有机碳源的捕获/分离,并采用高效厌氧消化与热电联产(CHP)耦合技术实现COD有机化学能向电能的转化,这些年已出现碳源捕获(COD Capture)与碳源改向(Carbon Redirection)技术,国外已经有工程化案例。在量化解析污水中化学潜能的基础上,提出了"碳源捕获"1.0→2.0→3.0技术路线图,综述了目前主要的污水"碳源捕获"热点技术,展示了面向未来的可持续污水处理技术路线图,以期为国内污水厂"碳中和"运行及未来可持续污水厂及生态再生水厂开发提供借鉴。  相似文献   

4.
可持续污水处理之目标以回收污水中资源与能源为己任,特别强调工艺运行逼近碳中和目标,以减少CO2等温室气体的排放。德国布伦瑞克(Braunschweig)市运行已半个多世纪的老厂——斯泰因霍夫(Steinhof)的工艺实践演示,从剩余污泥厌氧消化产甲烷(CH4)中回收的能量不仅可满足其自身供热需要,而且还能提供全厂包括深度处理、营养物利用、出水灌溉在内全部耗电量的79%,相应减少79%的外源CO2。将出水及污泥输送至农业灌溉与施肥后,可节省因灌溉抽取地下/地表水及化肥生产造成的能量消耗,间接减少35%的CO2排放量。这实际上使得该厂总外源CO2减少高达114%,已超额完成碳中和运行目标。强化能量(CH4)生产与转化技术的改进措施显示,向厌氧消化池内投加青草等共消化基质、对剩余污泥采取热水解预处理措施、余热发电采用郎肯循环等可有效提高生物气体的产量与能源转化率,使该厂CO2减排量进一步提高。该厂在营养物及水资源利用方面的做法表明,土地利用是污水中所含资源的理性归宿。  相似文献   

5.
剩余污泥转化能源的瓶颈与突破技术   总被引:2,自引:0,他引:2  
发展低碳经济演绎出污水处理"碳中和"运行的概念,其实质就是污水处理运行向着能源消耗自给自足的方向逼近。为此,剩余污泥厌氧消化转化能源技术重获生机。然而,污泥厌氧消化除受一般影响因素与工艺条件限制外,在很大程度上被污泥组分所控制。在简述有机物厌氧消化一般影响因素与工艺条件的基础上,总结、归纳出稳固的剩余污泥细胞体与木质纤维素结构是污泥转化能源的瓶颈所在,腐殖质的存在很大程度上也会抑制其他有机物的水解。通过适当预处理技术可实现对细胞破壁与木质纤维素破稳的双重效果,也可能会对腐殖质结构破坏产生一定影响。此外,研究在厌氧消化系统内屏蔽腐殖质抑制水解过程的方法亦十分重要。系统外部CO2或H2的介入有可能会刺激甲烷的生成,同时也存在一定程度上的"碳捕捉"作用。  相似文献   

6.
污水处理碳中和运行已成为未来污水处理的核心内容,这就使得剩余污泥将成为潜在的能源载体物质,需要以增量方式去获得,从而彻底改变污泥是污水处理过程中的一种"负担"、需以减量方式使之消灭的现行观念。的确,具有足够的剩余污泥量方能保证其在厌氧消化过程中转化为碳中和运行的自给自足所需能量。为此,欧美等国家通过COD内源截留与外源挖潜方式最大限度地去实现"污泥增量"。在内源截留方面,可对进水COD实施前端浓缩或筛分,但仅限于高负荷COD进水情况。针对我国市政污水COD普遍偏低的情况,前端浓缩或筛分COD似乎并不适用,应寻求与厨余垃圾等市政有机固体废弃物共消化方能实现"污泥"增量的目的。其实,污水处理碳中和运行的关键并不存在技术障碍,主要受限于政府的宏观环境政策。只要政府高瞻远瞩,予以政策支持、甚至是财政补贴,才能真正与国际接轨,触动污水处理行业朝着碳中和方向迈进,从而获得被普遍看好的综合环境效益。  相似文献   

7.
田海成  杨红红  焦文海  王磊 《市政技术》2022,(12):154-159+165
传统的城镇污水处理厂在消耗大量电能的同时也消耗了大量的药剂,探求具有节能、降耗以及能源和物质资源回收等特点的碳中和路径迫在眉睫。梳理了污水处理领域的前沿技术且分析了其在碳中和方面所具有的优势,按照碳、氮、磷分段去除的方式对相关碳中和技术进行有机组合,最终得出了实现城镇污水处理厂碳中和的潜在路径。能源自给率最高的碳中和路径是首先采用主流厌氧消化技术将进水中的有机化学能回收利用,然后再进行短程硝化-厌氧氨氧化脱氮以及磷回收,污泥进行厌氧消化回收能量。实现城镇污水处理厂碳中和的主要难点包括提升进水有机物浓度、降低难降解有机物浓度、厌氧氨氧化技术以及厌氧消化技术的主流应用等。  相似文献   

8.
介绍了污泥中温消化和热电联产在青岛麦岛污水处理厂二期工程(14×104m3/d)中的应用,其消化污泥来自化学强化MultifloTrio的初沉污泥和曝气生物滤池Biostyr剩余污泥的混合污泥。此种混合污泥沼气产气率高,经中温厌氧消化所产沼气全部用于发电,可满足全厂65%以上的用电需求,回收的余热可加热消化池的污泥,经济效益突出。  相似文献   

9.
追求污水处理碳中和运行目标产生了从污水中前端分离碳源(碳捕捉)的欧洲概念,使之用于后端厌氧消化转化甲烷。我国市政污水碳源(COD)浓度普遍偏低,连脱氮除磷碳源需求都难以满足,这就限制了碳捕捉的理论和实践。然而,另外一种碳捕捉概念似乎是普遍适用的,那就是前端筛分纤维素。纤维素物质本身化学结构异常复杂、稳固,在污水好氧处理以及污泥厌氧消化过程中都难以降解,最后大多残留于消化污泥之中,从而加大剩余污泥产量。况且,纤维素与丝状细菌结构上有相似之处,存在"架桥"而导致污泥膨胀的可能。因此,将纤维素在污水处理前端以大孔径膜分离方式筛分出来应该是为污水、污泥处理减负的重要举措;筛分后的纤维素可回收用作他用(如生产透水沥青等),纤维素筛分后可降低整体运行能耗40%,增加处理负荷30%。介绍了筛分纤维素概念,综述其研究与应用现状,评价碳源分离技术的应用前景。  相似文献   

10.
污水处理“碳中和”运行能耗赤字来源及潜能测算   总被引:1,自引:0,他引:1  
"碳中和"运行是污水处理技术今后发展的必然。剩余污泥固然可以作为污水处理运行能耗自给自足的重要来源,但是剩余污泥的多寡又取决于进水中有机物的含量。在有机物浓度普遍偏低的我国市政污水处理厂,单靠剩余污泥转化能源显然难以满足全部运行能耗。本研究测算表明,利用污水处理厂出水作为水源热泵制冷、制热,或通过在主要处理单元上设置光伏发电组件可以产生非常可观的热量或电能。水源热泵只需使用不到15%的处理水量便可以满足至少50%以上的运行能耗,完全可以弥补因剩余污泥转化能源不足而形成的能源赤字。相形之下,光伏发电可获得的能量则显得有些"微不足道",仅能满足约10%的运行能耗。这表明,我国市政污水处理厂通过剩余污泥转化能源和污水源热泵方式一般就可以满足"碳中和"的运行目标。  相似文献   

11.
为了实现污水厂剩余污泥的资源化,污泥厌氧消化工艺的应用愈加普遍,厌氧消化过程是否会对剩余污泥的脱水性能产生影响是值得研究的问题。为此,利用加药污泥真空抽滤试验考察了污泥的脱水性能,结果表明,中温厌氧消化污泥(MADS)的比阻和过滤时间(TTF50)均大于剩余污泥(EAS)以及含水率接近厌氧消化污泥的浓缩后剩余污泥(TEAS),剩余污泥经浓缩后脱水速率有一定的降低,而厌氧消化过程会使剩余污泥的脱水速率大幅度降低。激光衍射粒度分析仪的测定结果显示,EAS及MADS的平均粒径分别为70.44、42.00μm,比表面积分别为2 122、3 743 cm2/m L;由紫外光谱和傅里叶变换红外光谱对胞外聚合物(EPS)的分析表明,厌氧消化后污泥液相中的核酸量大幅增加,细胞壁被破坏,蛋白质和多聚糖等大分子物质被降解为小分子物质。由污泥理化特性的检测结果可以推断,厌氧消化污泥的脱水速率低于剩余污泥,但若加大脱水压差或延长脱水时间,厌氧消化污泥的泥饼含水率会更低。  相似文献   

12.
主要介绍了德国城市污水处理厂污泥厌氧处理工艺发展和技术水平。对污泥消化池的池型与搅拌技术选择进行了重点分析,并针对德国最流行的沼气利用技术,即沼气马达-热电联产设备(BHKW)进行经济性分析。分别从工艺、政策、管理层面介绍了德国污泥厌氧消化技术的现状,对该技术的发展趋势进行了展望。  相似文献   

13.
结合某曝气生物滤池工艺过程中污泥厌氧消化系统工程实例,介绍了该厂污水处理工艺、污泥厌氧消化系统及其构筑物,分析了污泥厌氧消化系统运行工况。结果表明,厌氧消化系统中污泥高有机质含量、适量FeCl_3的引入以及合理的沼气能源出路有助于实现污泥厌氧消化工程较好的经济和环境效益。  相似文献   

14.
曹晶  潘胜 《中国市政工程》2012,(3):42-45,51,106
研究了剩余污泥在中温厌氧消化条件下脱水性能的变化及其作用机制。剩余污泥厌氧消化过程中,消化污泥的比阻(SRF)相比于剩余污泥有一定的减小,消化污泥的过滤速度有一定的改善,但改善不明显。聚丙烯酰胺(PAM)、FeCl3和聚合氯化铝(PAC)3种絮凝剂调理试验显示,消化污泥的最佳投药量相对于剩余污泥均有所增加,说明消化污泥脱水性能变差。分析了2种污泥中胞外聚合物(EPS)含量及污泥颗粒特性的变化,表明消化过程导致EPS的降解并向液体中释放。随着EPS含量的减少,由EPS架桥形成的较大絮体解体成为较小的污泥颗粒,污泥中小颗粒的比例增加,污泥的脱水性能变差。  相似文献   

15.
为确定剩余污泥高效消化的有效方式,采用不接种颗粒污泥(NOGS)和接种颗粒污泥(GS)的EGSB反应器处理含固率为10%的剩余污泥。在27~33℃的中温条件下,当回流量为10 L/h、液体上升流速为1. 5 m/h、消化时间为21 d时,对比NOGS-EGSB厌氧消化剩余污泥、GSEGSB厌氧消化剩余污泥、GS-EGSB厌氧消化热水解(90℃、45 min)的剩余污泥(+后期微氧)和GS-EGSB微氧消化剩余污泥(+后期餐厨垃圾协同消化)的运行效果。结果表明,EGSB反应器中回流形成的适度搅拌能强化对剩余污泥的处理。高活性颗粒污泥内丰富的微生物菌群的集群协同作用保证了对剩余污泥的高效处理效果。热水解能够强化剩余污泥中微生物的溶胞效果,提高微生物细胞中有机物的溶出率,但微氧曝气对溶出后有机物的降解更有效。微氧EGSB反应器能够高效处理剩余污泥,少量餐厨垃圾的加入能够促进剩余污泥的消化。高活性颗粒污泥、微氧曝气、餐厨垃圾协同消化是EGSB反应器高效处理剩余污泥的关键因子。  相似文献   

16.
剩余污泥含水率对中温固态厌氧消化的影响   总被引:1,自引:0,他引:1  
污泥厌氧消化是污泥资源化利用的重要途径,但传统的液态厌氧消化会产生大量处理成本较高的沼液,固态厌氧消化则能克服这个缺点。以脱水后的剩余污泥为原料,并用秸秆调节碳氮比,研究了中温(35℃)条件下含水率(65%~85%)对固态厌氧消化的影响。结果表明,消化初期产生高浓度的挥发性脂肪酸(VFA),并导致初期p H值迅速下降至5.5~6.2,VFA浓度和含水率呈正相关。含水率越高,反应启动越快,反应周期越短。当含水率为70%~80%时,VS的降解率达到56.0%~58.3%,甲烷产率为452.9~459.5 m L/g。因此,对于污泥的中温固态厌氧消化,适宜的含水率为70%~80%。  相似文献   

17.
针对污泥制取生物柴油过程中产生的粗甘油废弃化问题及剩余污泥减量化和资源化需求,探讨了添加粗甘油对剩余污泥厌氧消化的影响。在厌氧污泥最佳接种量试验基础上,进行了不同粗甘油添加量(0. 5~2. 0 g/L)对剩余污泥厌氧消化产气、污泥减量、有机物转化及系统稳定性的影响研究。结果表明,厌氧污泥接种量为30%时最佳,此时剩余污泥厌氧消化累积产气量及VS减量率分别可达171. 1 m L/gVS和24. 13%。其次,不同粗甘油添加量均可促进剩余污泥厌氧消化过程,且添加量为0. 5 g/L时,累积产气量达197. 6 m L/gVS,且其中的甲烷平均比例高达70. 2%,厌氧消化系统对TCOD、TS、SCOD和VS的去除率分别达到26. 82%、19. 49%、50. 11%和27. 44%,此时pH值波动范围为6. 96~7. 70。因此,添加粗甘油对剩余污泥厌氧消化具有促进作用,其最佳添加量为0. 5 g/L。  相似文献   

18.
超声破解促进污泥高温厌氧消化研究   总被引:1,自引:0,他引:1  
城市污水厂的剩余污泥经槽式超声波反应器预处理后,被投加到小型高温厌氧反应器中进行消化处理,通过改变投配率来控制厌氧消化时间,研究超声破解对高温厌氧消化反应速率和效率的影响。试验结果表明,与未经预处理的污泥相比,超声破解能够明显提高污泥高温厌氧消化的生物气产量及对有机物的去除率。控制组在停留时间为20d时对TCOD的去除率为37.29%,而破解污泥在第8天时的去除率就达到了39.60%。这表明污泥经超声破解后其厌氧消化性能得到改善,超声破解不但可以提高厌氧消化对有机物的去除率,而且可以缩短反应时间,在不影响厌氧消化反应正常进行的条件下,还实现了污泥的减量化。  相似文献   

19.
郑州市马头岗污水处理厂污泥热干化工程将污泥厌氧消化处理产生的沼气首先用于脱水污泥的热干化处理,将热干化尾气中的热量回收用于厌氧消化系统污泥的加热及消化罐的保温,通过能源的重复利用,在无需外加能源的情况下,实现了污泥厌氧消化+热干化系统的能量自平衡。该工程的成功运行对城镇污水处理厂污泥处理处置工艺选择具有示范意义。  相似文献   

20.
针对城市污泥厌氧消化效率及产气量低等问题,采用新型热水解(Thermal Hydrolysis Pre-Treatment,THP)技术对污泥进行预处理,并结合高温厌氧消化技术进行小试试验,考察THP对污泥粒径、有机物的溶出率及高温厌氧消化产气性能的影响。研究结果表明,经过THP预处理之后,污泥粒径明显减小,为后续厌氧消化处理的水解酸化提供了有利条件;THP使污泥中的有机物得到有效释放,预处理后初沉污泥和剩余污泥中的SCOD、溶解性碳水化合物和溶解性蛋白质的含量分别提高了14,95,19倍和29,45,19倍;THP明显提升了污泥高温厌氧产气性能,初沉污泥和剩余污泥消化单位有机物(VS)累计产气量分别较未经THP处理的污泥提高了19.96%和39.14%。试验结果可为城市污泥高温厌氧消化预处理工艺的选择提供一定的理论依据。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号