首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This research reports on the adsorption and precipitation of mixtures of anionic and cationic surfactants having single and twin head groups. The surfactant mixtures investigated were: (i) a single-head anionic surfactant, sodium dodecyl sulfate (SDS), in a mixture with the twin-head cationic surfactant pentamethyl-octadecyl-1,3-propane diammonium dichloride (PODD)—adsorption was studied on negatively charged silica; and (ii) a twin-head anionic surfactant, sodium hexadecyl-diphenyloxide disulfonate (SHDPDS), and the single-head cationic surfactant dodecylpyridinium chloride (DPCI)—adsorption was studied on positively charged alumina. Whereas the mixed surfactant system of SHDPDS/DPCI showed adsorption on alumina that was comparable to the of SHDPDS alone, the mixed surfactant system of SDS/PODD showed increased adsorption on silica as compared with PODD alone. The adsorption of the SDS/PODD mixture increased as the anionic and cationic system approached an equimolar ratio. Precipitation diagrams for mixtures of single- and twin-head surfactant systems showed smaller precipitation areas than for single-head-only surfactant mixtures. Thus, the combination of single- and double-head surfactants helps reduce the precipitation region and can increase the adsorption levels, although the magnitude of the effect is a function of the specific surfactants used.  相似文献   

2.
Linear alkanes with two pyrrolidone groups in both termini [abbreviation: 1,n-dipyrrolidonyl alkane (1,n-DPA) (n=3, 5, 9, and 12)] were synthesized. Their surface activities were evaluated in terms of surface tension, and compared with those of a few kinds of surfactants. Among 1,n-DPAs, 1,3-, 1,5-, and 1,9-DPAs were fully soluble in water and surface-active: especially 1,9-DPA showed a surface tension value of γW/A 32.8 mN/m at 5.9×10−2 mol/L or 1.7 wt% and was suggested as a nonionic surfactant with simple structure and moderate activity. Critical miceller concentration (CMC) of 1,9-DPA was 1.45×10−2 mol/L. Surface tension values of 1,5- and 1,9-DPAs were lower than those of the corresponding monofunctional pyrrolidones, N-propyl and N-pentylpyrrolidones. Minimum area per surfactant molecule (Amin) decreased with increase of methylene chain length in the series of 1,n-DPAs. The results suggested that 1,n-DPA favorably chooses a loop structure at air/water interface.  相似文献   

3.
The unrecovered hydraulic fracturing fluid will invade the matrix and induce water blockage, creating formation damage and hindering the oil or gas production rate. First, the synergistic effect of cationic Gemini surfactant (MQAS) and nonionic fluorosurfactant (N-2821) mixtures on reducing the surface tension and wettability alteration was investigated in this paper. The critical micelle concentration (CMC) of the surfactant mixture is one or two orders of magnitude lower than that of N-2821 and MQAS, indicating that the MQAS/N-2821 mixtures exhibit an apparent synergistic effect in reducing surface tension. Moreover, the maximal contact angle of MQAS/N-2821 mixtures reached 83.55° at αN-2821 = 0.5, and the total surfactant concentration of 1 × 10−4 mol/L due to the adsorption of surfactant. The adsorption mechanism of surfactants on the surface of quartz sand was then examined. The adsorption kinetics is consistent with the pseudo-second-order model at different surfactant concentrations, while the Freundlich model is suitable for describing the adsorption behavior of surfactants on the sandstone surface. This finding indicates that surfactant adsorption is multilayered. The MQAS/N-2821 surfactant mixtures have excellent surfactant activity due to the relationship of the capillary pressure to the surface tension, pore radius, and contact angle; thus, the addition of surfactant mixtures can reduce the liquid saturation effectively. Furthermore, the sequential imbibition experiments indicate that MQAS/N-2821 mixtures alter the wettability of the core plug, which results from the adsorption of surfactants. Compared with brine water, the MQAS/N-2821 mixtures decreased the liquid saturation and increased the permeability recovery ratios of the core plug.  相似文献   

4.
Measurements of the surface tension (γ LV ) and the advancing contact angle (θ) on poly(tetrafluoroethylene) (PTFE) were carried out for aqueous solutions of sodium decyl sulfate (SDS) and sodium dodecyl sulfate (SDDS) and their mixtures. The results obtained indicate that the values of the surface tension and the contact angle of solutions of surfactants on PTFE surface depend on the concentration and composition of the surfactants mixture. On the curves presenting the relationship between the surface tension, contact angle and monomer mole fraction of SDDS (α) in the mixture of SDDS and SDS, there is a minimum at α equal to 0.8 which together with the negative values of the interaction parameters indicate that synergism occurs in surface tension and contact angle reduction almost in the range of concentration corresponding to the saturated monolayer of surfactants at the water–air interface. The results and calculations obtained also indicate that for single surfactants and their mixtures at a given concentration in the bulk phase, the values of surface excess concentration of the surfactants at water–air and PTFE–water interfaces are nearly the same, which suggests that the orientation of SDDS and SDS molecules at both interfaces in saturated monolayer should be vertical to the interfaces. Taking into account the values of the monomer mole fractions of the surfactants in a mixed monolayer at the water–air interface and values of the contact angle of a single surfactant on the PTFE surface, it is possible in a simple way to predict the values of the contact angle of a mixture at a given concentration and composition.  相似文献   

5.
Selection of surfactant pairs for optimization of interfacial properties   总被引:2,自引:0,他引:2  
Guidelines are provided for the selection of surfactant pairs when synergism in various interfacial properties in aqueous media is desired. To maximize the reduction of the critical micelle concentration, the two surfactants should show strong attractive interaction in the mixed micelle; in order to maximize efficiency in surface tension reduction, strong interaction in the mixed monolayer at the aqueous solution/air interface (large negativeβ values is needed). The more surface-active material should predominate in the mixture. When interaction is not strong, the two surface-active materials used should have approximately equal surface activities and should be used at equimolar concentration in the aqueous phase. To minimize the surface tension (γ) of the solution, the surfactant-surfactant attractive interaction in the mixed monolayer at the aqueous solution/air interface must exceed that in the mixed micelle. Optimization can be achieved by using two surfactants with approximately equal γ values at their respective critical micelle concentrations (CMC’s). When these γ values are not equal, the surfactant with the higher γ value at its CMC should have the smaller area/molecule at the surface. The greater the difference between attractive interaction at the interface and in the micelle, the lower the value of the surface tension.  相似文献   

6.
The properties of some well-characterized sodium linear decyldiphenylether (C10DPE)sulfonates have been studied. Among the properties investigated are dynamic and equilibrium surface tension, critical micelle concentration (CMC), area per molecule at the aqueous solution/air interface, wetting time by the Draves technique, foaming by the Ross-Miles method, solubilization, and hydrotropy. The decyldiphenylether moiety appears to be equivalent to a terminally substituted straight alkyl chain of 16 carbon atoms. The trialkyl- and dialkyl-mono-sulfonates have solubilities of < 0.01 g/dm3 in water, but are readily soluble in hexane. The didecyldiphenyl ether disulfonate (DADS) has a very low CMC value (1.0 × 10−5 mol dm−3) in aqueous 0.1 N Na+ solution (NaCl), characteristic of surfactants with two hydrophilic and two hydrophobic groups. It also has a much larger area per molecule at the aqueous solution/air interface than the monodecyldiphenyl-ether monosulfonate (MAMS) and a much higher surface tension at the CMC. MAMS has a much lower surface tension at a surface age of 1 second (γ1s) than either DADS or the monodecyldiphenylether disulfonate (MADS). In agreement with γ1s and γeq values, wetting times increase in the order: MAMS < DADS < MADS and initial foam heights decrease in the order: MAMS > DADS > MADS. Solubilization for three water-insoluble surfactants decreases in the order: DADS > MAMS > MADS, while hydrotropy is most pronounced with the disulfonates.  相似文献   

7.
Measurements of the surface tension of aqueous solution of mixtures of sodium dodecyl sulfate (SDDS) with methanol and ethanol in SDDS concentration range from 10−5 to 10−2 M and mixtures of sodium hexadecyl sulfonate (SHS) with methanol and ethanol at SHS concentration from 10−5 to 8 × 10−4 M and for methanol and ethanol from 0 to 21.1 and, 11.97 M, respectively, were carried out at 293 K. Moreover, the surface tension of aqueous solution mixtures of SDDS with propanol in the concentration range from 0 to 6.67 M taken from the literature was also considered. The results obtained indicate that it is possible to describe the relationship between the surface tension and molar concentration or molar fraction of alcohol by Szyszkowski and Connors equations. However, the Fainerman and Miller equation allows us to predict the isotherm of the surfactant tension at constant anionic surfactants concentration at which their molecules are present in the solution in the monomeric form if the molar area of surfactants and alcohols can be determined. Based on the surface tension isotherms, the Gibbs surface excess of anionic surfactants and alcohols concentration at water–air interface was determined and then recalculated for Guggenheim-Adam surface excess concentration of these substrates, and next the molar fraction of alcohols and surfactants in the surface layer was determined. These molar fractions were discussed with regard to surfactant and alcohol standard free energy of adsorption at the water–air interface determined from Langmuir and Aronson and Rosen equations. The standard free energy of adsorption determined in these ways was compared to that deduced on the basis of pC20 and Lifshitz van der Waals-components of the anionic surfactant and alcohol tails.  相似文献   

8.
A novel homologous series of 1-N-l-phenylalanine-glycerol ether surfactants was synthesized in satisfactory yields via reaction of epichlorohydrin with aliphatic alcohols with alkyl chains of 10–15 carbon atoms. Structural assignment of the new compounds was made on the basis of elemental analysis and spectroscopic data. Critical micelle concentration (CMC), surface tension at the CMC (γCMC), surfactant concentration required to reduce the surface tension of the solvent by 20 mN/m (pC20), and the interfacial area occupied by the surfactant molecules (Amin) were determined from aqueous surface tension measurements using the Wilhelmy plate technique.  相似文献   

9.
By performing measurements of the equilibrium surface tensions of electrolyte solutions of three unsymmetrical bolaamphiphiles, each of which has an aromatic ring and a ω-carboxyalkyl chain in its molecular structure, we conclude that the carboxyl and sulfonate groups at both ends of the molecule—which enter the solution while the hydrophobic chain extends into the air—can force these surfactants to adopt a looped configuration which looks like the letter “U” upside-down, resulting in regular arrangements at the air/water interface and micelles in bulk solution. Surface tension measurements of these surfactants as a function of added salt reveal the limiting surface tension to be less sensitive to the ionic strength in LiCl solution and significantly sensitive to divalent Ca2+ and Mg2+ ions in hard water. This result reveals that the looped configuration of the molecule is the dominant factor in determining whether the molecules of this surfactant are sensitive to ionic strength or not. This paper also reports briefly on the effect of the interactions of divalent Ca2+ and Mg2+ ions with unsymmetrical bolaamphiphiles on the turbidity of hard water. These results suggest that the interactions of divalent Ca2+ and Mg2+ ions with carboxyl groups are strong, and the two breaks in the surface tension curves disappear. In 200 ppm hard water, the turbidity appears over just a small range of surfactant concentrations, showing that the presence of the Ca2+ and Mg2+ ions has little effect on the application of these surfactants.
Weihong Qiao (Corresponding author)Email:
  相似文献   

10.
The critical micelle concentrations (CMC) of nine commercial nonionic surfactants (Tween 20, 22, 40, 60, and 80; Triton X-100; Brij 35, 58, and 78) and two pure nonionics [C12(EO)5 and C12(EO)8] were determined by surface tension and dye micellization methods. Commercially available nonionic surfactants (technical grade) usually contain impurities and have a broad molecular weight distribution owing to the degree of ethoxylation. It was shown that the surface tension method (Wilhelmy plate) is very sensitive to the presence of impurities. Much lower CMC values were obtained with the surface tension method than with the dye micellization method (up to 6.5 times for Tween 22). In the presence of highly surfaceactive impurities, the air/liquid interface is already saturated at concentrations well below the true CMC, leading to a wrong interpretation of the break in the curve of surface tension (γ) vs. concentration of nonionic surfactant (log C). The actual onset of micellization happens at higher concentrations, as measured by the dye micellization method. Furthermore, it was shown that when a commercial surfactant sample (Tween 20) is subjected to foam fractionation, thereby removing species with higher surface activity, the sample yields almost the same CMC values as measured by surface tension and dye micellization methods. It was found that for monodisperse pure nonionic surfactants, both CMC determination methods yield the same results. Therefore, this study indicates that precaution should be taken when determining the CMC of commercial nonionic surfactants by the surface tension method, as it indicates the surface concentration of all surface-active species at the surface only, whereas the dye method indicates the presence of micelles in the bulk solution.  相似文献   

11.
Dynamic and equilibrium surface tensions of surfactin aqueous solutions   总被引:2,自引:0,他引:2  
A homologous series of surfactins containing β-hydroxy fatty acids having 13, 14, or 15 carbon atoms were isolated from the supernatant of Bacillus subtilis strain S499 cultures. Their surface-active properties at the air-water interface were then evaluated. Dynamic surface tension data were analyzed by the relaxation function γtm+(γo−γm)/[1+(t/t*)n]. Based on various parameters t*, n, vmax, γm calculated from this equation, the dynamic surface properties of surfactin were found to depend on both bulk concentration and hydrophobic character of the alkyl chain. At low concentrations of surfactin, the dynamic surface tension (γd) decreased with increasing carbon atom number of the surfactin alkyl chain (n=13 to 15). However, at high concentrations, the maximum decrease of 41-4 was achieved by surfactin-C14. In contrast, more strongly hydrophobic alkyl chains in surfactins always enhanced their ability in reducing the equilibrium surface tensions and their aptitude in forming micelles.  相似文献   

12.
A new group of anionic surfactants, namely sodium salts of secondary alkanesulfonamidoacetic acid, were synthesized using n-alkanesulfonyl chlorides as starting materials. These surfactants, having the formula: R–SO2–NH–CH2–COONa, with R = C12, C14, C16 and C18, were obtained in a simple way with quantitative yields. Different chain lengths and positional isomers of this new type of surfactants are expected to present differences in surface properties and foamability. The surface properties including critical micelle concentrations and minimal surface tensions γmin were determined for each prepared surfactant using surface tension measurements with a Wilhelmy plate. Surface excess and minimum area per molecule at the air–water interface were determined for different concentrations at 25 and 50 °C using the Gibbs equation. The foaming power was also determined by the Bartsch method, and the results obtained were compared to those of a commercial surfactant, the linear alkylbenzenesulfonate. The stability of the foam formed was also evaluated. As expected, these surfactants exhibit good surface properties and show good foaming power.  相似文献   

13.
14.
The conditions derived previously for three types of synergism in aqueous binary mixtures of surfactants-mixed micelle formation, surface tension reduction efficiency, and surface tension reduction effectiveness-are reviewed and verified by use of experimental data from the chemical literature. They involve the experimentally determined parameters, β and βM, related to the interaction between the two surfactants in the mixed monolayer at the aqueous solution/air interface and in the mixed micelle, respectively. The experimental data needed to determine whether a binary surfactant system is capable of synergism in these respects are: (a) the surface tension/log concentration curves of the individual surfactants in the vicinity of their critical micelle concentrations (cmc); (b) the cmc of at least one mixture of the two surfactants; and (c) the solution phase concentration of at least one mixture of the two surfactants needed to produce a surface tension attainable by both individual surfactants. From the available data, some tentative generalizations regarding the effect of chemical structure and the molecular environment of the values of β and βM have been made. Presented at the 73rd Annual Meeting of the AOCS, May 1982, in Toronto, Canada. Visiting Scholar from the People’s Republic of China.  相似文献   

15.
Some alkylnaphthalene and alkylphenanthrene sulfonates were synthesized by means of a Wurtz–Fittig reaction. The HLB values for the prepared compounds were calculated, and the basic properties were studied in water at different temperatures, namely, 25, 35 and 45 °C. Through surface tension measurements, the following values were determined: the critical micelle concentration (CMC) and the surface tension at the CMC (γCMC). The following values were calculated: area per molecule at the CMC (ACMC), standard free energy change of micellization (ΔG mic), standard free energy of adsorption (ΔG ad), and the efficiency of a surfactant in reducing surface tension (pC20). Furthermore, the partition coefficients of the synthesized compounds were also measured. The results show that n-alkylnaphthalene and n-alkylphenanthrene surfactants studied exhibit desirable properties that may be of value in some fields such as detergency. To confirm the detergency power of the prepared surfactants, some foam studies were performed.  相似文献   

16.
A small series of surfactants based on methyl oleate and glyceroe was synthesized. The synthesis utilizes an epoxidation reaction of methyl oleate followed by a simple esterification. The resultant products have between two and seven glyceride units, and their performance properties, including aqueous surface tensions and dynamic aqueous surface tensions, were studied. The droplet size of soybean oil/water emulsions made with each surfactant was also studied. The surfactants show properties similar to alcohol ethoxylates, such as the reduction of aquous surface tension to ∼34 mN m−1. Additionally, because the synthesis leaves the epoxide functionality in the surfactant, further modification for performance optimization is possible.  相似文献   

17.
The relationship between synergism in Ross-Miles foaming and the existence of other types of synergism in binary mixtures of surfactants has been investigated. All studies were conducted in solutions of constant ionic strength (0.1 M NaCl) at 25 and/or 60 C. Six anionic-zwitterionic or anionic-nonionic mixtures and a sodium dodecylbenzenesulfonate (LAS)-soap mixture, all consisting of commercial surfactants, were studied. Synergism in foaming effectiveness, measured by initial foam heights, appears to be related to synergism in surface tension (γ) reduction effectiveness, but not to synergism in γ reduction efficiency or in mixed micelle formation. The LAS-soap system showed negative synergism in foaming effectiveness, correlated with negative synergism in γ reduction effectiveness, the conditions for which are defined. There appears to be no correlation between synergism in foaming efficiency and synergism in either γ reduction efficiency or mixed micelle formation. There also appears to be no unambiguous relationship between foam stability, measured by the ratio of the 5-minute to the initial foam height, and the average area per surfactant molecule at the aqueous solution/air interface. Presented in part at the American Oil Chemists’ Society meeting in New Orleans in May 1987.  相似文献   

18.
The possibility and the prospect of cationic/anionic (“catanionic”) surfactant mixtures based on sulfonate Gemini surfactant (SGS) and bisquaternary ammonium salt (BQAS) in the field of enhanced oil recovery was investigated. The critical micelle concentration (CMC) of SGS/BQAS surfactant mixtures was 5.0 × 10−6 mol/L, 1–2 orders of magnitude lower than neat BQAS or SGS. A solution of either neat SGS or BQAS, could not reach an ultra-low interfacial tension (IFT); but 1:1 mol/mol mixtures of SGS/BQAS reduced the IFT to 1.0 × 10−3 mN/m at 100 mg/L. For the studied surfactant concentrations, all mixtures exhibited the lowest IFT when the molar fraction of SGS among the surfactant equaled 0.5, indicating optimal conditions for interfacial activity. The IFT between the 1:1 mol/mol SGS/BQAS mixtures and crude oil decreased and then increased with the NaCl and CaCl2 concentrations. When the total surfactant concentration was above 50 mg/L, the IFT of SGS/BQAS mixtures was below 0.01 mN/m at the studied NaCl concentrations. Adding inorganic salt reduced the charges of hydrophilic head groups, thereby making the interfacial arrangement more compact. At the NaCl concentration was above 40,000 mg/L, surfactant molecules moved from the liquid–liquid interface to the oil phase, thus resulting in low interfacial activity. In addition, inorganic salts decreased the attractive interactions of the SGS/BQAS micelles that form in water, decreasing the apparent hydrodynamic radius (DH, app) of surfactant aggregates. When the total concentration of surfactants was above 50 mg/L, the IFT between the SGS/BQAS mixtures and crude oil decreased first and then increased with time. At different surfactant concentrations, the IFT of the SGS/BQAS mixtures attained the lowest values at different times. A high surfactant concentration helped surfactant molecules diffuse from the water phase to the interfacial layer, rapidly reducing the IFT. In conclusion, the cationic-anionic Gemini surfactant mixtures exhibit superior interfacial activity, which may promote the application of Gemini surfactant.  相似文献   

19.
Long-chain alkylnaphthalene sulfonates were synthesized by means of a Wurtz-Fittig reaction, and the basic properties were studied in water at 30°C. Through surface tension measurements, the following values were determined: the critical micelle concentration (CMC) and the surface tension at the CMC (γCMC). The following values were calculated: area per molecule at the CMC (ACMC), standard free energy change of micellization (ΔG mic o ), standard free energy of adsorption (ΔG ad o ), and the “efficiency” of a surfactant in reducing surface tension (pC20). The micelle aggregation numbers were measured through steady-state fluorescence-quenching methods. As the chain length of the hydrocarbon of n-alkylnaphthalene sulfonate increased, the Krafft temperature increased, the surface tension decreased, the value of CMC decreased, pC20 increased, ΔG ad o and ΔG mic o became more negative, and the micelle aggregation number increased. The results showed that sodium α-(n-decyl)naphthalene sulfonate (DNS) had a high pC20, low Krafft temperature, and lower CMC than other surfactants in this study. Thus, DNS and the other n-alkylnaphthalene surfactants studied exhibit desirable properties that may be of value in some fields such as detergency, oil recovery, and dyes.  相似文献   

20.
The contact angles of saturated calcium dodecanoate (CaC12) solutions containing a second subsaturated surfactant on a precipitated CaC12 surface were measured by using the drop shape analysis technique. The subsaturated surfactants used were anionic sodium dodecylsulfate (NaDS), anionic sodium octanoate (NaC8), and nonionic nonylphenol polyethoxylate (NPE). Comparing at the critical micelle concentration (CMC) for each surfactant, NaC8 was the best wetting agent, followed by NaDS, with NPE as the poorest wetter (contact angles of 320, 420, and 620, respectively). Surface tension at the CMC increased in the order NaC8<NPE<NaDS, and subsaturated surfactant adsorption increased in the order NPE≪NaDS (1.4 vs. 84 μmole/g); adsorption of the NaC8 was not measurable. Interfacial tension (IFT) reduction at the solid-liquid interface due to subsaturated surfactant adsorption is an important contribution to contact angle reduction, in addition to surface tension reduction at the air-water interface. Surfactant adsorption onto the soap scum solid is crucial to solid-liquid IFT reduction and to good wetting. The fatty acid was the best wetting agent of the three surfactants studied, probably because calcium bridging with the carboxylate group synergizes surfactant adsorption onto the solid of the higher molecular weight soap. NaCl added to NaDS surfactant results in depressed CMC, lower surface tension at the CMC, decreased NaDS adsorption onto the solid, and decreased reduction in solid-liquid IFT. The contact angle is not dependent on the NaCl concentration for NaDS. The NaCl causes an increased tendency to form monolayers, which decrease air-water surface tension, but a decreased tendency to form adsorbed aggregates on the solid; the two trends offset each other, so wettability is not affected by added salt. The Zisman equation does not describe the wetting data for these systems well except for NaDS, further emphasizing the danger of ignoring solid-liquid IFT reduction in interpreting wetting data in these systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号