首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The doubly charged and triply charged ion yields from keV ion-silicon surface scattering are found to have a strong dependence on the atomic number Z1 of the incident ion. For Z1 < Z2 the yield of scattered multicharged ions increases with Z1, so that these ions dominate the recoiling Si2+ and Si3+ ions by Z1 = 9. In contrast, when Z1 > Z2, there are large yields of Si2+ and Si3+ ions, and the multicharged scattered ion yields are too small to detect. The interaction radius at which shell vacancies are produced is also found to change, suggesting that electron promotion occurs at a different level crossing on either side of Z1 = Z2.  相似文献   

2.
The blue region of the room temperature photoluminescence spectrum from Si nanocrystallites formed in SiO2 by Si+ ion implantation has been observed for the first time after annealing in a forming gas (10% H2 + 90% N2) ambient. Thermally grown SiO2 on Si substrates were implanted with a dose of 2 × 1017 Si+ cm−2 at energies of 200 keV and 400 keV. For reference purposes, quartz silica was implanted also with the same dose of 200 keV Si+ ions. The implanted samples were annealed in nitrogen and forming gas at 900°C for 3 to 180 min. Both the SiO2 and quartz samples exhibited luminescence at about 380 nm which was weak, but detectable, before annealing. During extended anneals in forming gas, the intensity increased by a factor of about 2 above that recorded after a nitrogen anneal but the peak position was unchanged. The intensity was greater in samples annealed in forming gas which is due to the additional hydrogen. It would seem that this blue luminescence originates from new luminescent centres in the matrix caused by the Si+ ion implantation.  相似文献   

3.
Pulsed plasma thrusters(PPTs) are an attractive form of micro-thrusters due to advantages such as their compactness and lightweight design compared to other electric propulsion systems.Experimental investigations on their plasma properties are beneficial in clarifying the complex process of plasma evolution during the micro-second pulse discharge of a PPT. In this work, the multi-dimensional evolutions of the light intensity of the PPT plasma with wavelength, time, and position were identified. The plasma pressure was obtained using an iterative process with composition calculations. The results show that significant ion recombination occurred in the discharge channel since the line intensities of CII, CIII, CIV, and FII decreased and those of CI and FI increased as the plasma moved downstream. At the center of the discharge channel, the electron temperature and electron density were in the order of 10 000 K and 10~(17) cm~(-3),respectively. These had maximum values of 13 750 K and 2.3?×?10~(17) cm~(-3) and the maximum temperature occurred during the first half-cycle while the maximum number density was measured during the second half-cycle. The estimated plasma pressure was in the order of 10~5 Pa and exhibited a maximum value of 2.69?×?10~5 Pa.  相似文献   

4.
The temporal evolution of extreme ultraviolet (EUV) emission spectra of laser-produced antimony (Sb) plasmas has been measured in the 7–16 nm wavelength region using spatio- temporally resolved lase-produced plasma spectroscopy technique. The spectral profiles involve an intense quasi-continuous band with superimposed intense characteristic radiation and are different with the increase of delay time. The spectral structures were also analyzed according to Hartree–Fock calculations with configuration interaction effects and contributed from 4d–4f, 4d–4p, and 4d–5f unresolved transition arrays of Sb7+ – Sb13+. A steady-state collisional- radiative model was used to estimate the electron temperature and density range of Sb plasmas. This work would enrich the spectral data of highly-charged ions and provided a possible selection for developing EUV light sources.  相似文献   

5.
The synthesis of SiGe/Si heterostructures by Ge+ ion implantation is reported. 400 keV Ge+ ions were implanted at doses ranging from 3 × 1016 to 10 × 1016 ions/cm2 into (001) Si wafers, followed by Si+ amorphisation and low temperature Solid Phase Epitaxial Regrowth (SPER). TEM investigations show that strained alloys can be fabricated if the elastic strain energy (Eel) of the SiGe layer does not exceed a critical value (Eel) of about 300 mJ/m2, which is independent of the implantation energy. Our analysis also suggests that “hairpin” dislocations are formed as strain relieving defects in relaxed structures. A “strain relaxation” model is proposed to explain their formation.  相似文献   

6.
The lattice damage accumulation in GaAs and Al0.3Ga0.7As/GaAs superlattices by 1 MeV Si+irradiation at room temperature and 350°C has been studied. For irradiations at 350°C, at lower doses the samples were almost defect-free after irradiation, while a large density of accumulated defects was induced at a higher dose. The critical dose above which the damage accumulation is more efficient is estimated to be 2 × 1015 + Si/cm2 for GaAs, and is 5 × 1015 Si/cm2 for Al0.8Ga0.7As/GaAs superlattice for implantation with 1.0 MeV Si ions at 350°C. The damage accumulation rate for 1 MeV Si ion implantation in Al0.3Ga0.7As/GaAs superlattice is less than that in GaAs.  相似文献   

7.
Epitaxial, buried silicon carbide (SiC) layers have been fabricated in (100) and (111) silicon by ion beam synthesis (IBS). In order to study the ion beam induced epitaxial crystallization (IBIEC) of buried SiC layers, the resulting Si/SiC/Si layer systems were amorphized using 2 MeV Si2+ ion irradiation at 300 K. An unexpected high critical dose for the amorphization of the buried layers is observed. Buried, amorphous SiC layers were irradiated with 800 keV Si+ ions at 320 and 600°C, respectively, in order to achieve ion beam induced epitaxial crystallisation. It is demonstrated that IBIEC works well on buried layers and results in epitaxial recrystallization at considerably lower target temperatures than necessary for thermal annealing. The IBIEC process starts from both SiC/Si interfaces and may be accompanied by heterogenous nucleation of poly-SiC as well as interfacial layer-by-layer amorphization, depending on irradiation conditions. The structure of the recrystallized regions in dependence of dose, dose rate, temperature and crystal orientation is presented by means of TEM investigations.  相似文献   

8.
利用北京大学2×1.7MV静电串列加速器产生的1.5MeV Au2+和Si+束流轰击碳纳米管样品,用二次离子飞行时间质谱方法分析了二次离子成分,通过质量已知的样品的定标,确认了轰击产生的二次离子质量。分析束流轰击后的二次离子产额,发现在此能量下二次离子产额与离子在物质中射程的横向歧离表现出正相关。  相似文献   

9.
This paper presents the coronal ionization state distribution for argon. The calculations includeab initiorate coefficients for collisional excitation followed by autoionization (EA), and rates for direct ionization and dielectronic and radiative recombination. The EA rate coefficients have been fitted to analytical expressions, and the fitting coefficients are tabulated. The paper then presents the calculated radiative cooling coefficient for argon ions in a low-density plasma as a function of temperature. The channels for power loss from argon ions include collisional-radiative (CR) line emission, dielectronic and radiative recombination, and bremsstrahlung emission. The power emitted via CR line emission for each ion is tabulated on a grid of temperatures and densities. The total power loss coefficient is fitted to an analytical expression in powers of the temperature.  相似文献   

10.
以CaCO3、Nd2O3、TiO2、SiO2、Al2O3为原料,用固相法制备掺钕榍石固溶体(Ca0.86Nd0.14Ti0.86Al0.14SiO5)。采用PCT法进行浸泡实验,借助X射线衍射(XRD)、扫描电镜(SEM)、电感耦合等离子体发射光谱(ICP-OES)等分析手段,研究掺钕榍石固溶体在热 水 力 化学(THMC)耦合作用下的化学稳定性。结果表明,在pH值为5~9、温度150~200 ℃、压强0.476~1.554 MPa的耦合作用下,Ca0.86Nd0.14Ti0.86Al0.14SiO5固溶体具有良好的化学稳定性;pH值、温度(压力)对Ca0.86Nd0.14Ti0.86Al0.14SiO5固溶体中Si4+、Al3+、Nd3+的归一化浸出率无明显影响;Ca2+在200 ℃(1 554 MPa)时的抗浸出性能较150 ℃时的好;在浸泡初期(1~21 d)Ca2+在pH值为9时的抗浸出性能优于pH值为5和7时的,浸泡后期(28、42 d)3种溶液中固溶体的Ca2+抗浸出性能趋于一致;Ti4+在pH值为9时的抗浸出性能较pH值为5和7时的好。  相似文献   

11.
Thermal SiO2 films have been implanted with Si+ ions using double-energy implants (200 + 100 keV) at a substrate temperature of about −20°C to total doses in the range 1.6 × 1016−1.6 × 1017 cm−2 followed by short-time thermal processing, in order to form a Si nanostructure capable of yielding blue photoluminescence (PL). The intensity and the peak position of the PL band have been investigated as a function of ion dose, manner of heat treatment, anneal time and anneal temperature. For the formation of blue PL emitting centres, optimum processing conditions in terms of excess Si concentration and overall thermal budget are mandatory. The nature of the observed blue emission is discussed.  相似文献   

12.
The damage distributions induced by ultra low energy ion implantation (5 keV Si+) in both strained-Si/Si0.8Ge0.2 and normal Si are measured using high-resolution RBS/channeling with a depth resolution better than 1 nm. Ion implantation was performed at room temperature over the fluence range from 2 × 1013 to 1 × 1015 ions/cm2. Our HRBS results show that the radiation damage induced in the strained Si is slightly larger than that in the normal Si at fluences from 1 × 1014 to 4 × 1014 ions/cm2 while the amorphous width is almost the same in both strained and normal Si.  相似文献   

13.
For H+ and He2+ ions impinging on Al, Cu, Ag and Au targets we measured simultaneously the yield, γ, of emitted electrons and the electronic energy loss, Se, in the energy range 0.5 to 4.8 MeV. The targets were prepared under high-vacuum conditions before they were transferred to an ultra-high-vacuum chamber without breaking the vacuum. The targets were sputter cleaned and their composition was examined by Auger electron spectrometry. The values of γ were obtained by current integration and Se was determined from the energy width of Rutherford backscattering spectra. For H+ ions impinging on Cu, Ag or Au and He2+ on Al and Cu, the expected proportionality between γ and Se was found within the experimental errors of 2%. For H+ ions on Al and He2+ ions on Ag and Au targets, significant deviations were observed.  相似文献   

14.
The spectral characteristic of laser-induced plasma in soil was studied in this work, laser-induced breakdown spectroscopy was used to analyze the spectral characteristic of plasma under the condition of different time delays and irradiances. Moreover, the time evolution characteristics of plasma temperature and electron density were discussed. Within the time delay range of 0-5 μs,the spectral intensity of the characteristic lines of Si I: 288.158 nm, Ti I: 336.126 nm, Al I:394.400 nm and Fe I: 438.354 nm of the four main elements in two kinds of national standard soil decayed exponentially with time. The average lifetime of the spectral lines was nearly 1.56 μs. Under the condition of different time delays, the spectral intensity of Pb I: 405.78 nm in soil increased linearly with laser energy. However, the slope between the spectral intensity and laser energy decreased exponentially with the increase in time delay, from 4.91 to 0.99 during 0-5 μs. The plasma temperature was calculated by the Boltzmann plot method and the electron density was obtained by inversion of the full width at half maximum of the spectrum. The plasma temperature decreased from 8900 K to 7800 K and the electron density decreased from 1.5 × 10~(17) cm~(-3) to 7.8 × 10~(16) cm~(-3) in the range of 0-5 μs.  相似文献   

15.
Si nanocrystals (Si-nc) embedded in a SiO2 layer have been characterized by means of transmission electron microscopy (TEM) and X-ray photoelectron spectroscopy (XPS). For local Si concentration in excess  8 × 1021 Si+/cm3, the size of the Si-nc was found to be 3 nm and comparatively homogeneous throughout the whole implanted layer. For local Si concentration in excess of 2.4 × 1022 Si+/cm3, the Si-nc diameter ranges from 2 to 12 nm in the sample, the Si-nc in the middle region of the implanted layer being bigger than those near the surface and the bottom of the layer. Also, Si-nc are visible deeper than the implanted depth. Characterization by XPS shows that a large quantity of oxygen was depleted from the first 25 nm in this sample (also visible on TEM image) and most of the SiO2 bonds have been replaced by Si–O bonds. Experimental and simulation results suggest that a local Si concentration in excess of 3 × 1021 Si/cm3 is required for the production of Si-nc.  相似文献   

16.
UV-pulsed laser cavity ringdown spectroscopy of the hydroxyl radical OH(A–X)(0–0)band in the wavelength range of 306–310 nm was employed to determine absolute number densities of OH in the atmospheric helium plasma jets generated by a 2.45 GHz microwave plasma source.The effect of the addition of molecular gases N_2 and O_2 to He plasma jets on OH generation was studied.Optical emission spectroscopy was simultaneously employed to monitor reactive plasma species.Stark broadening of the hydrogen Balmer emission line(H_β)was used to estimate the electron density nein the jets.For both He/N_2 and He/O_2 jets, newas estimated to be on the order of 10~(15)cm~(-3).The effects of plasma power and gas flow rate were also studied.With increase in N_2 and O_2 flow rates, netended to decrease.Gas temperature in the He/O_2 plasma jets was elevated compared to the temperatures in the pure He and He/N_2 plasma jets.The highest OH densities in the He/N_2 and He/O_2 plasma jets were determined to be 1.0?×10~(16)molecules/cm~3 at x?=?4 mm(from the jet orifice)and 1.8?×?10~(16)molecules/cm~3 at x=3 mm, respectively.Electron impact dissociation of water and water ion dissociative recombination were the dominant reaction pathways, respectively, for OH formation within the jet column and in the downstream and far downstream regions.The presence of strong emissions of the N_2~+ bands in both He/N_2 and He/O_2 plasma jets, as against the absence of the N_2~+ emissions in the Ar plasma jets, suggests that the Penning ionization process is a key reaction channel leading to the formation of N_2~+ in these He plasma jets.  相似文献   

17.
The damage produced by implanting, at room temperature, 3 μm thick relaxed Si1−xGex layers with 2 MeV Si+ ions has been measured as a function of Ge content (x = 0.04, 0.13, 0.24 or 0.36) and Si dose in the dose range 1010–1015 cm−2. The accumulation of damage with increasing dose has been studied as a function of Ge content by Rutherford Backscattering Spectrometry, Optical Reflectivity Depth Profiling and Transmission Electron Microscopy and an increased damage efficiency in Si1−xGex with increasing x is observed. The characteristics of implantation-induced defects have been investigated by Electron Paramagnetic Resonance. The results are discussed in the context of a model of the damage process in SiGe.  相似文献   

18.
The electron kinetic model for investigating the transport and ionization rate coefficients of argon glow discharge dusty plasma is developed from the Boltzmann equation.Both of the electron-neutral and electron-dust collisions are considered as collision terms in the kinetic equation.The kinetic equation is simplified by employing the local approximation and nonlocal approach under the same discharge conditions,and the corresponding simplified kinetic equations are known as local and nonlocal kinetic equations respectively.Then the electron energy distribution function(EEDF)is obtained by numerically solving the local and nonlocal kinetic equations and the dust charging equations simultaneously.Based on the obtained EEDFs,the effective electron temperature,electron mobility,electron diffusion coefficient and ionization rate coefficient are calculated for different discharge conditions.It is shown that the EEDFs calculated from the local kinetic model clearly differ from the nonlocal EEDFs and both the local and nonlocal EEDFs are also clearly different with Maxwellian distributions.The appearance of dust particles results in an obvious decrease of high energy electrons and increase of low energy electrons when axial electric field is low.With the increase of axial electric field,the influence of dust particles on the EEDFs becomes smaller.The electron mobility and diffusion coefficients calculated on the basis of local and nonlocal EEDFs do not differ greatly to the dust-free ones.While,when dust density nd=10^6 cm^?3,the electron mobility increases obviously compared with the dust-free results at low axial electric field and decreases with the increasing axial electric field until they are close to the dust-free ones.Meanwhile,electron diffusion coefficients for dusty case become smaller and decrease with the increasing axial electric field.The ionization rate coefficients decrease when dust particles are introduced and they approach the dust-free results gradually with the increasing axial electric field.  相似文献   

19.
《等离子体科学和技术》2016,18(11):1123-1129
An experimental setup of laser-induced graphite plasma was built and the spectral characteristics and properties of graphite plasma were studied. From the temporal behavior of graphite plasma, the duration of CN partials(B~2∑~+→X~2∑~+) emission was two times longer than that of atomic carbon, and all intensities reached the maximum during the early stage from0.2 μs to 0.8 μs. The electron temperature decreased from 11807 K to 8755 K, the vibration temperature decreased from 8973 K to 6472 K, and the rotational temperature decreased from7288 K to 4491 K with the delay time, respectively. The effect of the laser energy was also studied, and it was found that the thresholds and spectral characteristics of CN molecular and C atomic spectroscopy presented great differences. At lower laser energies, the electron excited temperature, the electron density, the vibrational temperature and rotational temperature of CN partials increased rapidly. At higher laser energies, the increasing of electron excited temperature and electron density slow down, and the vibrational temperature and rotational temperature even trend to saturation due to plasma shielding and dissociation of CN molecules. The relationship among the three kinds of temperatures was T_(elec)T_(vib)T_(rot) at the same time. The electron density of the graphite plasma was in the order of 10~(17)cm~(-3) and 10~(18)cm~(-3).  相似文献   

20.
An ion source with a plasma cathode has been developed for long lifetime use in ion implanters. In this ion source, a plasma cathode replaces the conventional metallic filament used in a Freeman-type ion source. This ion source consists of two compartments, namely a plasma generator and an ion source chambers interconnected by a tapered narrow duct. The pressure difference between the two parts, maintained by differential pumping, prevents the feed gas from flowing into the plasma generator. With any combination of an argon plasma cathode and a feed gas of either fluoride (AsF5, PF5) or oxygen, the lifetime was found to be more than 90 h with an extraction voltage of 40 kV and a correspoding ion current density of 20 mA/cm2, and a considerable amount of As+, P+, O+, and O2+ ions were observed in mass spectra.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号