首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 73 毫秒
1.
2.
针对骨架步态识别任务中步态信息时空关联性弱和易受复杂背景干扰的问题,该文提出一种基于深度卷积神经网络和动态门记忆学习(DCNN-DGML)的骨架步态识别算法。首先根据步态运动规律建立端到端的步态识别模型;其次为了实现多层特征语义信息的融合,该模型中设计了多层特征融合机制改进GoogleNet;同时,在LSTM的基础上设计了一种动态门记忆学习结构来记录时序信息,以提升特征的鲁棒性。为了评估提出的DCNNDGML步态识别系统,在自建数据库上进行了实验研究,识别精度达到97%,结果明显优于传统步态识别方法。  相似文献   

3.
行为识别(action recognition,AR)是计算机视觉领域的研究热点,在安防监控、自动驾驶、生产安全等领域具有广泛的应用前景。首先,对行为识别的内涵与外延进行了剖析,提出了面临的技术挑战问题。其次,从时间特征提取、高效率优化和长期特征捕获三个角度分析比较了行为识别的工作原理。对近十年43种基准AR方法在UCF101、HMDB51、Something-Something和Kinetics400数据集上的性能表征进行比对,有助于针对不同应用场景选择适合的AR模型。最后指明了行为识别领域的未来发展方向,研究成果可为视频特征提取和视觉内容理解提供理论参考和技术支撑。  相似文献   

4.
基于深度学习的人体行为识别算法综述   总被引:10,自引:0,他引:10  
人体行为识别和深度学习理论是智能视频分析领域的研究热点, 近年来得到了学术界及工程界的广泛重视, 是智能视频分析与理解、视频监控、人机交互等诸多领域的理论基础. 近年来, 被广泛关注的深度学习算法已经被成功运用于语音识别、图形识别等各个领域.深度学习理论在静态图像特征提取上取得了卓著成就, 并逐步推广至具有时间序列的视频行为识别研究中. 本文在回顾了基于时空兴趣点等传统行为识别方法的基础上, 对近年来提出的基于不同深度学习框架的人体行为识别新进展进行了逐一介绍和总结分析; 包括卷积神经网络(Convolution neural network, CNN)、独立子空间分析(Independent subspace analysis, ISA)、限制玻尔兹曼机(Restricted Boltzmann machine, RBM)以及递归神经网络(Recurrent neural network, RNN)及其在行为识别中的模型建立, 对模型性能、成果进展及各类方法的优缺点进行了分析和总结.  相似文献   

5.
针对人体行为识别问题,比较了两种基于智能手机惯性加速度传感器数据的深度特征学习方法。与传统的人工特征提取方法相比,基于深度特征学习方法可以实现端到端训练,网络结构简单直观,避免了繁琐的特征工程,通过深度神经网络模型的学习自动获得特征。本文通过对比深度卷积神经网络、长短期记忆网络两种深度学习方法在公开网站UCI的机器学习知识库的人体行为识别数据集上的识别效果,论证了基于Dropout深度卷积神经网络特征学习方法的有效性。  相似文献   

6.
为有效解决传统人工标注定位车辆行为存在的检测率低且相应的目标检测算法实用性差的弊端,提出一种基于深度学习的车辆时序动作检测算法,将视频中车辆直行行为设为背景行为,车辆转向、掉头等行为设定为目标行为。利用双流卷积网络对长视频中目标行为进行提取得到初级区域提议,利用双向长短记忆网络对得到的初级提议进行细化裁剪操作,实现对车辆行为类别的检测以及该行为的时间提取。实验结果表明,该算法与其它算法进行比较,在平均精度和时间交并比上均较优。  相似文献   

7.
为提高学校、商场等公共场所的安全性,实现对监控视频中的偷窃、抢劫和打架斗殴等异常双人交互行为的自动识别,针对现有基于关节点数据的行为识别方法在图的创建中忽略了2个人之间的交互信息,且忽略了单人非自然连接关节点间的交互关系的问题,提出一种基于交互关系超图卷积模型用于双人交互行为的建模与识别。首先针对每一帧的关节点数据构建对应的单人超图以及双人交互关系图,其中超图同时使多个非自然连接节点信息互通,交互关系图强调节点间交互强度。将以上构建的图模型送入时空图卷积对空间和时间信息分别建模,最后通过SoftMax分类器得到识别结果。该算法框架的优势是在图的构建过程中加强考虑双人的交互关系、非自然连接点间结构关系以及四肢灵活的运动特征。在NTU数据集上的测试表明,该算法得到了97.36%的正确识别率,该网络模型提高了双人交互行为特征的表征能力,取得了比现有模型更好的识别效果。  相似文献   

8.
9.
针对基于似然和特征工程的调制识别方法存在需要人为提取特定特征和鲁棒性低等缺点,提出一种结合一维卷积神经网络和长短期记忆网络的深度学习模型,并将原始IQ信号转化为瞬时幅度和相位的调制信号数据,有效提高QAM16和QAM64之间区分度,从而提高10类数字和模拟信号的调制识别准确率.实验结果表明,在信噪比0 dB以上的平均准确率达到了93.21%,比现有方法准确率提高约3.4百分点,高信噪比下数字调制信号识别准确率达到了约99%.  相似文献   

10.
针对传统行为识别依赖手工提取特征,智能化程度不高,识别精度低的问题,提出一种基于3D骨骼数据的卷积神经网络(CNN)与双向长短期记忆网络(Bi-LSTM)的混合模型。使用3D骨骼数据作为网络输入,CNN提取每个时间步的3D输入数据间的空间特征,Bi-LSTM更深层地提取3D数据序列的时间特征。该混合模型自动提取特征完成分类,实现骨骼数据到识别结果的端对端学习。在UTKinect-Action3D标准数据集上,模型的识别率达到97.5%,在自制Kinect数据集上的准确率达到98.6%,实验结果表明,该网络有效提高了分类准确率,具备可用性和有效性。  相似文献   

11.
针对现有基于深度学习的人体动作识别模型参数量大、网络过深过重等问题,提出了一种轻量型的双流融合深度神经网络模型并将该模型应用于人体动作识别。该模型将浅层多尺度网络和深度网络相结合,实现了模型参数量的大幅减少,避免了网络过深的问题。在数据集UCF101和HMDB51上进行实验,该模型在ImageNet预训练模式下分别取得了94.0%和69.4%的识别准确率。实验表明,相较于现有大多基于深度学习的人体动作识别模型,该模型大幅减少了参数量,并且仍具有较高的动作识别准确率。  相似文献   

12.
对基于机器视觉的人体动作识别的成果进行研究,为提高视频数据集中人体动作的识别率,提出一种改进的深度网络模型。采用稠密光流方法处理数据,结合二维卷积神经网络(2DCNN)、三维卷积神经网络(3DCNN)和长短期记忆神经网络(LSTM)对动作特征进行提取,利用Softmax分类器识别分类。通过KTH数据集进行实验对比验证,分析结果表明,改进模型相比其它已有模型具有更高的识别率,动作识别效果更优。  相似文献   

13.
针对人体动作深度视频的四维信息映射到二维空间后,动作分类容易发生混淆的问题,提出一种基于深度学习的人体动作识别方法。首先构建空间结构动态深度图,将深度视频的四维信息映射到二维空间,进行信息降维处理;然后提出基于联合代价函数的深度卷积神经网络,结合交叉熵损失函数与中心损失函数作为联合代价函数,指导卷积层学习到更具分辨力的深度特征,以进行更精确的分类。在MSRDailyActivity3D和SYSU 3D HOI两个数据集的实验结果表明,与现有方法相比,该方法识别率得到了较明显的提升,验证了其有效性和鲁棒性。该方法较好地解决了动作分类容易发生混淆的问题。  相似文献   

14.
织物缺陷在线检测是纺织行业面临的重大难题,针对当前织物缺陷检测中存在的误检率高、漏检率高、实时性不强等问题,提出了一种基于深度学习的织物缺陷在线检测算法。首先基于GoogLeNet网络架构,并参考其他分类模型的经典算法,搭建出适用于实际生产环境的织物缺陷分类模型;其次利用质检人员标注的不同种类织物图片组建织物缺陷数据库,并用该数据库对织物缺陷分类模型进行训练;最后对高清相机在织物验布机上采集的图片进行分割,并将分割后的小图以批量的方式传入训练好的分类模型,实现对每张小图的分类,以此来检测缺陷并确定其位置。对该模型在织物缺陷数据库上进行了验证。实验结果表明:织物缺陷分类模型平均每张小图的测试时间为0.37 ms,平均测试时间比GoogLeNet减少了67%,比ResNet-50减少了93%;同时模型在测试集上的正确率达到99.99%。说明其准确率与实时性均满足实际工业需求。  相似文献   

15.
群体情绪识别是人机交互领域的前言课题,针对群体情绪识别准确率的问题,结合卷积神经网络(CNN)与长短期记忆网络(LSTM),提出一种多流CNN-LSTM网络模型学习群体情绪的静态和动态特征。以视频序列的原始图像、视觉显著图形和叠加的光流图像分别作为三个通道的输入,利用CNN网络对空间特征和局部运动特征进行分析,得到的特征图直接输入LSTM网络,进行全局运动特征的学习。最后连接Softmax分类器,对三个通道的Softmax输出进行加权融合,得到分类结果。实验结果表明,本文模型可有效地识别4种典型的群体情绪,且识别率高于已有算法,准确度(ACC)和宏平均精度(MAP)分别最高可达82.6%、84.1%。  相似文献   

16.
基于深度迁移学习的烟雾识别方法   总被引:1,自引:0,他引:1  
王文朋  毛文涛  何建樑  窦智 《计算机应用》2017,37(11):3176-3181
针对传统的基于传感器和图像特征的烟雾识别方法易被外部环境干扰且识别场景单一,从而造成烟雾识别精度较低,而基于深度学习的识别方法对数据量要求较高,对于烟雾数据缺失或数据来源受限的情况模型识别能力较弱的问题,提出一种基于深度迁移学习的烟雾识别方法。将ImageNet数据集作为源数据,利用VGG-16模型进行基于同构数据下的特征迁移。首先,将所有的图像数据进行预处理,对每张图像作随机变换(随机旋转、剪切、翻转等);其次,引入VGG-16网络,将其卷积层特征进行迁移,并连接预先使用烟雾数据在VGG-16网络中训练过的全连接层;进而构建出基于迁移学习的深度网络,从而训练得到烟雾识别模型。利用公开数据集以及真实场景烟雾图像进行实验验证,实验结果表明,和现有主流烟雾图像识别方法相比,所提方法有较高的烟雾识别率,实验精度达96%以上。  相似文献   

17.
为了梳理深度学习方法在人体动作识别领域的发展脉络,对该领域近年来最具代表性的模型和算法进行了综述。以人体动作识别任务流程为线索,详细阐述了深度学习方法在视频预处理阶段、网络结构上的最新成果及其优缺点。介绍了人体动作识别相关的两类数据集,并选取常用的几种进行具体说明。最后,对人体动作识别未来的研究方向进行了探讨与展望。  相似文献   

18.
针对现有的动作识别算法的特征提取复杂、识别率低等问题,提出了基于批归一化变换(batch normalization)与GoogLeNet网络模型相结合的网络结构,将图像分类领域的批归一化思想应用到动作识别领域中进行训练算法改进,实现了对视频动作训练样本的网络输入进行微批量(mini-batch)归一化处理。该方法以RGB图像作为空间网络的输入,光流场作为时间网络输入,然后融合时空网络得到最终动作识别结果。在UCF101和HMDB51数据集上进行实验,分别取得了93.50%和68.32%的准确率。实验结果表明,改进的网络架构在视频人体动作识别问题上具有较高的识别准确率。  相似文献   

19.
针对基于深度学习的静态人脸图像表情识别方法进行研究,首先介绍了深度学习的原理,并归纳了目前公开且常用的面部表情数据集;然后介绍了基于深度学习的表情识别的三个步骤,归纳了图像预处理和表情分类的主要方法,重点总结了目前性能较好用来提取特征的深度学习框架以及这些方法的基本原理和优劣势比较;最后指出了目前面部表情识别存在的问题和未来可能的发展趋势。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号