首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 78 毫秒
1.
采用真空热压烧结工艺,在2150℃及30 MPa压制压力条件下,保温30 min制备了石墨烯/B4 C陶瓷基复合材料.采用拉曼光谱仪、X射线衍射仪和扫描电镜分析了复合材料的物相组成和显微结构,通过测量陶瓷的相对密度、硬度和弯曲强度,研究了氧化石墨烯添加量对B4C烧结行为和力学性能的影响.结果 表明:复合材料的相对密度随着石墨烯含量的增加先增加而后降低.当氧化石墨烯含量为3.0wt%时,复合材料的力学性能达到最大值,其抗弯强度为547 MPa,断裂韧性为4.50 MPa·m1/2,裂纹偏转以及石墨烯拔出是材料力学性能提升的原因;与此同时,该复合材料的电导率达到1.0 S/m以上,达到了电加工所需的电导率水平.  相似文献   

2.
用溶液共混法制备出聚偏氟乙烯/氧化石墨烯复合材料(PVDF/GO),经高温热压将GO还原得到聚偏氟乙烯/还原氧化石墨烯复合材料(PVDF/rGO)。研究了填料种类及含量对复合材料电学性能、热稳定性和力学性能的影响。结果表明:随GO和rGO的添加,两种复合材料的介电常数(ε r)均变大、介电损耗(tanδ)变化不大;低含量下GO和rGO均能提高PVDF的热稳定性,但rGO对PVDF性能的改善效果更好;随填料含量从0增加到8%(质量),100 Hz下PVDF/rGO复合材料的ε r从3.60增加到38.30,PVDF/rGO[4%(质量)]复合材料失重率为5%的分解温度较纯PVDF提高了6.44℃。rGO增强了PVDF的刚性,PVDF/rGO复合材料的拉伸强度先增大后减小,杨氏模量逐渐增大,当rGO含量为4%(质量)时拉伸强度最大,拉伸强度和弹性模量分别较纯PVDF提高了35.30%、22.58%。但GO和rGO都降低了复合材料的击穿场强。  相似文献   

3.
采用己内酰胺(CPL)改性氧化石墨烯(GO)(CPL-GO),与天然橡胶(NR)复合后通过熔融共混法制备了CPL-GO/NR复合材料。考察了CPL-GO用量对CPL-GO/NR复合材料物理机械性能、界面相互作用和气体阻隔性能的影响。结果表明,CPL改性GO后,X射线衍射层间距增加,片层堆砌更为松散,CPL-GO与水接触角增至91.2°。当CPL-GO的质量分数为2.0%时,CPL-GO/NR复合材料的拉伸强度为26.1 MPa,较纯NR提高了50.9%。随着CPL-GO用量的增加,复合材料的储能模量增加,损耗因子的峰值减小,表明GO经CPL表面改性后与NR复合,增强了两相界面间的相互作用,从而提高了复合材料抵抗变形的能力。在40 ℃下,当CPL-GO的质量分数为3.0%时,CPL-GO/NR复合材料的气体渗透系数较纯NR下降了57.1%。  相似文献   

4.
《塑料科技》2017,(3):38-44
经溶液共混法成功制备了离子液体改性热还原氧化石墨烯/三元共聚尼龙(IL-TRGO/CO-PA)纳米复合材料,测试分析表明IL-TRGO能明显改善纳米复合材料的性能。XRD和SEM分析表明:当TRGO的含量不高于0.75%时,IL-TRGO片层可以均匀地分散在CO-PA基体中。DSC和TGA分析表明:IL-TRGO能够提高纳米复合材料的结晶温度和热稳定性,但降低了其玻璃化转变温度。力学性能测试表明:TRGO能够提高复合材料的力学性能,当TRGO含量为0.5%时,纳米复合材料的拉伸强度、屈服强度和断裂伸长率分别提高了82.1%、129%和22.7%;当TRGO含量为0.75%时,纳米复合材料的屈服强度提高了161.6%。  相似文献   

5.
6.
报道了一种简单而环境友好的制备高导电性化学还原氧化石墨烯/聚苯乙烯(CRGO/PS)复合材料的方法,获得了高导电性能的复合材料,并通过扫描电镜(SEM)、傅里叶变换红外(FTIR)、拉曼光谱(Raman)、四探针测试仪和高阻计对其结构和电性能进行表征。结果表明,制备的复合材料表现出优异的电学性能,具有极低的渗滤阈值(CRGO体积分数0.07%),CRGO体积分数为3.8%时,复合材料的导电率高达74.8 S/m。  相似文献   

7.
杨文强  吕生华 《应用化工》2014,(9):1705-1708
综述了还原法制备石墨烯的研究现状,主要介绍了金属还原、光催化还原、电化学还原、热还原、化学还原试剂还原等方法的研究进展,并指出了还原法制备石墨烯的发展趋势。  相似文献   

8.
赵健  张琳  姬敏 《橡胶工业》2013,60(8):453-457
采用溶液共混浇注成膜法制备氧化石墨烯/热塑性聚氨酯(TPU)复合材料,并对其结构和性能进行研究。结果表明:氧化石墨烯在TPU基体材料中分散较好;随着氧化石墨烯用量(0~5份)的增大,氧化石墨烯/TPU复合材料的拉伸强度增大,拉断伸长率未明显下降;当相同用量(均为1份)的氧化石墨烯、碳纳米管、石墨和炭黑分别填充TPU时,氧化石墨烯/TPU复合材料物理性能提高幅度最大,补强性能最好。  相似文献   

9.
氧化石墨烯(GO)具有较高的比表面积,层间距大,表面拥有丰富的官能团,可以很好地分散到聚合物中,但GO导电性差。研究对GO进行还原和表面修饰,以改善石墨烯和HDPE的相容性。采用熔融混炼法制备了HDPE/石墨烯复合材料,结合力学性能、导电性能、微观结构测试,考察不同HDPE/石墨烯复合材料的导电阈值,分析影响复合材料导电性的因素,进而得出较优化的制备工艺。研究发现石墨烯添加量为7.5%时,导电通路开始形成,当石墨烯含量达到7.5%时,拉伸强度提升22.14%,拉伸模量提升21.19%。  相似文献   

10.
采用丝网印刷方式将氧化石墨烯浆料印制在棉织物表面,再经还原方法得到了电热性能优良的石墨烯棉织物。综合分析织物表面形貌、表面电阻及发热性能,探究了印制次数、还原浓度、还原时间及还原剂种类对石墨烯棉织物发热性能影响。结果表明,印制次数为10次,还原浓度为5 mg/mL,时间6 h,施加在两端电压为24 V时,织物的表面电阻为4.0 kΩ/cm,表面温度为46.8℃,电热性能达到最佳。  相似文献   

11.
采用硅烷偶联剂表面处理的氧化石墨烯(GO)与氰酸酯树脂(CE)/超支化聚硅氧烷(HBPSi)共混制备了CE/HBPSi/GO复合材料,研究了GO含量对复合材料力学性能、介电性能、热稳定性和吸水率的影响。结果表明,添加适量GO可以有效提高CE/HBPSi的韧性和强度,还可以改善其介电性能、热稳定性和耐湿性。当GO的质量分数为0.8%时,CE/HBPSi/GO复合材料的冲击强度和弯曲强度达到最大值,分别为15.1 kJ/m2和131.6 MPa,并且该体系的介电常数、介电损耗角正切和吸水率均低于CE/HBPSi体系,热稳定性优于CE/HBPSi体系。  相似文献   

12.
以双马来酰亚胺树脂(BMI)预聚体改性氰酸酯树脂(CE)(CE/BMI)作为基体树脂,以氧化石墨烯(GO)作为增强体,通过浇铸成型工艺制备了CE/BMI/GO复合材料。研究了GO的质量分数对CE/BMI/GO复合材料力学和摩擦学性能的影响。结果表明,GO的加入有益于复合材料力学性能和摩擦学性能的提高。GO的质量分数为0.8%时复合材料获得最好的韧性和耐磨性。对比基体树脂,CE/BMI/GO复合材料的冲击强度和弯曲强度分别提高了33.6%和27.6%;摩擦系数和磨损率分别降低了22.5%和77.6%。  相似文献   

13.
李莹  张晨 《中国塑料》2019,33(5):7-13
通过酰胺化反应采用聚醚胺和三乙烯四胺对氧化石墨烯表面进行修饰,采用红外光谱及X射线光电子能谱分析表征了氨基修饰石墨烯的结构。将氨基修饰石墨烯引入到聚氨酯泡沫体系中,比较了2种氨基修饰石墨烯对聚氨酯泡沫形态结构、表观密度、压缩强度及热导率的影响。结果表明,聚醚胺修饰石墨烯和三乙烯四胺修饰石墨烯的加入,均导致聚氨酯泡沫复合材料的泡孔壁变得更加光滑,泡孔结构更加均匀,平均泡孔孔径也大幅减小,分别达到0.22 mm和0.23 mm;氨基修饰石墨烯的加入使得聚氨酯泡沫材料的表观密度、压缩强度和压缩模量均得到大幅度提高;无论加入何种氧化石墨烯,聚氨酯泡沫复合材料的热导率均略有上升,但上升幅度仍在可接受范围内。  相似文献   

14.
利用石墨烯优异的导电率、断裂强度等物理性质,可使聚丙烯(PP)/石墨烯复合材料表现出更好的力学性能以及导电性能。主要概述了PP/石墨烯复合材料的合成方法及其性能改进研究进展,并对PP/石墨烯复合材料的未来发展做了展望。  相似文献   

15.
采用共沉淀法制备了CoMn2O4/还原氧化石墨烯(CoMn2O4/rGO)复合电极材料,并研究了石墨烯含量对CoMn2O4/rGO复合材料形貌、微观结构及电化学性能的影响。结果表明:CoMn2O4纳米颗粒沉积在石墨烯纳米片的表面,随着石墨烯含量的增加,CoMn2O4纳米颗粒在r GO表面的分布逐渐均匀,聚集现象消失。CoMn2O4/rGO具有高的比表面积及优良的电化学性能,其中CoMn2O4/rGO20 (rGO质量分数为20%)电容性能最好,在电流密度1 A/g时具有1 420 F/g的比电容。CoMn2O4/rGO30(rGO质量分数为30%)的倍率性能和循环稳定性能最好。2 000次充放电后,样品CoMn2O4/rGO30在5 A/g时的比电容保持率为94%,样品CoMn2O4的比电容保持率为78%。  相似文献   

16.
以矿渣微粉(SP)和玻璃纤维(GF)为填料,经共混、挤出造粒、注射成型工序制备聚已内酰胺(PA6)/GF/SP三元复合材料,采用扫描电子显微镜观察断口形貌,通过检测复合材料试样的拉伸强度、冲击强度研究不同GF/SP配比比例以及SP的粒径对复合材料的力学性能影响。结果表明,当GF/SP配比填料总量定为30 %(质量分数,下同),SP与GF比例为1∶3时,平均粒径为7 μm的SP有最好的增强效果,拉伸强度为96.8 MPa;当SP平均粒径为15 μm时,三元复合材料具有最佳的冲击强度,比纯PA6提高了32.4 %,达到8.31 kJ/m2。  相似文献   

17.
利用二乙烯三胺在氧化石墨烯(GO)表面引入氨基基团得到改性GO,然后与环氧树脂(EP)复合,制备出GO增强EP复合材料。性能测试结果表明,该复合材料具有良好的疏水性及力学性能。复合材料的吸水率随着改性GO含量增加先降低后提高,当改性GO含量为0.2%时,吸水率最低,浸泡12 d后吸水率为0.125%,与纯EP相比降低了81.48%,当改性GO含量继续增加,由于复合材料界面局部空隙的增加,吸水率反而大幅上升。复合材料的拉伸强度、冲击强度随着改性GO含量增加先提高后降低,当改性GO含量为0.05%时,拉伸强度、冲击强度最高,分别为50.94 MPa,5.78 k J/m2,相比纯EP增加了104%和90%。综合考虑,当改性GO含量为0.05%时,复合材料的分散性能、疏水性及力学性能较优。  相似文献   

18.
利用经硅烷偶联剂表面处理的玻璃微珠,通过双螺杆挤出机直接和间接共混挤出方法制备玻璃微珠填充改性聚甲醛(POM)复合材料。对两种方法制备的POM复合材料的力学性能进行了对比分析,并分析了玻璃微珠含量对间接法制备的POM复合材料熔体流动性能和热性能的影响。结果显示,采用间接法制备POM复合材料,当玻璃微珠质量分数为2%时,POM复合材料的缺口冲击强度达到最大值,为8.94 k J/m2,当玻璃微珠质量分数为5%时,POM复合材料的弯曲强度达到最大值,为124 MPa,较直接法制备的POM复合材料分别提高了28.1%和27.8%。添加适量的玻璃微珠有助于改善POM复合材料的熔体流动性能和热稳定性,当玻璃微珠质量分数为5%时,POM复合材料的熔体流动速率达到11.2 g/(10 min),较纯POM提高了24.4%;当玻璃微珠质量分数为10%时,POM复合材料的初始分解温度达到最大值,为400℃,较纯POM提高了近50℃。  相似文献   

19.
采用共混与注塑工艺制备出聚对苯二甲酸丁二酯(PBT)/碱硼基空心玻璃微珠复合材料。通过高倍偏光显微镜、扫描电子显微镜对材料的结构进行了表征,并重点研究了碱硼基空心玻璃微珠对PBT复合材料的密度和力学性能的影响。结果表明:微珠由于是玻璃质的具有中空结构的正球体材料,具有质轻、粒径互补,合理填补空隙的作用。当微珠添加量达到15%时,PBT复合材料密度明显降低,下降约9%。复合材料拉伸强度和拉伸弹性模量有所增强,分别提高了9.5%和21.49%。复合材料弯曲强度和弯曲弹性模量具有同样的趋势,分别提高了7.0%和21.87%。综合各项强度,在冲击强度合理降低的情况下,微珠HN60最佳添加量为8%。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号