共查询到20条相似文献,搜索用时 58 毫秒
1.
利用电化学方法研究了904L超级奥氏体不锈钢不同时效下腐蚀性能的变化情况。研究结果表明:904L超级奥氏体不锈钢发生钝化时,致钝电流密度小,电位范围广,因此它容易获得钝化,这主要与904L含有较高含量的Cr、Mo合金元素有关;随着时效温度逐渐接近钢的析出敏感温度以及随着时效时间的延长,904L超级奥氏体不锈钢耐腐蚀性能明显下降。 相似文献
2.
超级高氮奥氏体不锈钢的耐腐蚀性能及氮的影响 总被引:18,自引:2,他引:18
用电化学测试、化学浸泡等方法研究了超级奥氏体不锈钢00Cr24Ni22Mo7Mn3CuN(654SMO)的耐点腐蚀和耐缝隙腐蚀的性能。通过改变氮含量,研究了氮对奥氏体不锈钢的耐点腐蚀和耐缝隙腐蚀性能的影响,结果表明,氮和适量的铬、钼结合,能显提高奥氏体不锈钢的耐点腐蚀和缝隙腐蚀的能力,并且随着氮含量的增国,砥体不锈钢的耐点腐蚀和耐缝隙腐蚀的能力也增强,对比实验表明,超级奥氏体不锈钢在耐点腐蚀,缝隙腐蚀等局部腐蚀性能方面可以和镍基合金C-276媲美,甚至优于镍基合金。 相似文献
3.
超级奥氏体不锈钢广泛应用于海洋、环保、化工等苛刻腐蚀环境。由于合金化程度较高,凝固过程凝固偏析严重,析出相多且复杂。本文结合热力学计算软件Thermo-Calc,分析S31254超级奥氏体不锈钢在凝固过程中组织的组成和析出相的演变规律,主要合金元素Mo、Cr、Ni、N在凝固过程发挥的功能及其对相组织演变的影响,Mo-Cr元素交互作用对凝固相组织演变影响规律。结果表明,该钢种液固相线温度分别是1 394.4℃和1 358.6℃,平衡凝固路径是L→γ,非平衡凝固路径是L→L1+γ→L2+γ+δ→γ+δ+σ。Mo偏析是导致σ相析出的主要原因,δ相和σ相析出时,液相中Mo含量分别为8.5%和11.3%。 相似文献
4.
本文针对超级奥氏体不锈钢进行了锻造工艺研究,分析了该钢种的热锻开裂的原因,摸索出该钢种的热锻制度,为今后开发该产品的热加工提供工艺指导。 相似文献
5.
耐蚀不锈钢及合金在海洋技术(近海、脱盐、海上民用及军用)中的应用越来越多,这是由于腐蚀环境越来越恶劣及对设备安全性要求的提高。天然海水对不锈钢有特殊的腐蚀性,只有合金化较高的不锈钢才能满足这种环境的耐腐蚀要求。DCN公司在2507超级双相钢UNS S32550、S32750和NiCrMo合金,特别是625合金(UNS N06625)和A59合金(UNS N06059)的研究方面有重要成果。在海水中进行多项耐腐蚀性研究后,NiCrMo合金和2507超级双相钢已被用于海水管线工程。一种新型不锈钢B66(UNSS31266)在海洋应用方面表现出令人很感兴趣的性能。 相似文献
6.
介绍了S31254超级奥氏体不锈钢的化学成分、焊接工艺,通过对S31254的焊接工艺评定,获得可靠的参数范围,用于指导现场生产。 相似文献
7.
利用热力学计算了S31254超级奥氏体不锈钢在500~1 200 ℃温度范围内的平衡态析出相,并结合热模拟试验、扫描电镜、透射电镜等方法,对不同析出物的析出行为进行了表征和分析。结果表明,S31254不锈钢奥氏体基体中可存在的第二相包括σ、χ、Laves等金属间相,Cr2N、π型氮化物相以及M23C6型碳化物相,高Mo、高N、高Cr含量是该钢析出相种类复杂的主要原因;试验钢具有高的第二相析出倾向,σ相开始析出温度约为1 150 ℃,而在900~800 ℃区间可发现χ相和σ相的转变,χ相更易作为一种稳定相存在;析出相的析出位置和形貌呈现不同特点,晶界析出主要为σ相、χ相和Laves相,而晶内主要有呈针状和块状分布的χ相和呈棒状析出的Cr2N相。 相似文献
8.
10.
11.
近代超级不锈钢的发展 总被引:7,自引:0,他引:7
不锈钢的近代发展目标是超级不锈钢-超级奥氏体,超级铁素体,超级复相不锈钢。这些钢可在大范围内解决局部腐蚀问题并在某些用途中可替代钛和镍基合金。 相似文献
12.
445J2铁素体不锈钢由于高的导热率、低的热膨胀系数以及良好的耐蚀性能使得其作为溴冷机中一些部件的良好候选材料,本文采用电化学测试方法对比研究了445J2超纯铁素体不锈钢(/%:0.01C,22.5Cr, 1.9Mo, 0.27Nb, 0.20Ti, 0.09Al, 0.36Cu, 0.015P,0.001S,0.015N)和316L奥氏体不锈钢(/%:0.002C,16.8Cr, 10.19Ni, 2.02Mo, 0.025P,0.0008S)在20~60℃0.1~1M的溴化锂溶液中的点蚀行为,并采用扫描电镜(SEM)和能谱分析仪(EDS)对电化学结果进行表征。结果表明,随着LiBr温度和浓度的升高,两种钢腐蚀电流密度增大,点蚀电位降低,耐点蚀性变差;氧化物和硫化物夹杂会引起两种钢的点蚀;高含量的Cr以及Mo、Ti、Nb、Al等合金元素使445J2钢具有优异的耐点蚀性能。 相似文献
13.
445M铁素体不锈钢缝隙腐蚀性能的研究 总被引:1,自引:0,他引:1
研究了445M铁素体不锈钢(%:0.004~0.005C、22.24~22.29Cr、1.10~1.65Mo、0.015~0.016P、0.003~0.004S、0.012~0.016N、0.22~0.38Ti)和316L奥氏体不锈钢(%:0.022C、16.80Cr、10.19Ni、2.02Mo、0.025P、0.001S、0.046N)在40~60℃氯离子浓度(250~5 000)×10-6的氯化钠溶液的缝隙腐蚀性能。结果表明,445M铁素体不锈钢的耐缝隙腐蚀性能优于316L奥氏体不锈钢;当445M钢中的Mo含量由1.10%提高至1.65%时,钢的耐缝隙腐蚀性能明显提高,表明点蚀当量Cr+3.3Mo是衡量不锈钢耐点蚀和耐缝隙腐蚀的重要指标。 相似文献
14.
15.
16.
17.
研究了950~1 200℃60 min水冷的固溶处理对超级双相不锈钢S32750(/%:0.02C、0.49Si、1.03Mn、0.026S、0.001P、25.01 Cr、7.03Ni、3.80Mo、0.29N)12 mm板的组织、力学性能和耐蚀性的影响。结果表明,随固溶温度升高,钢中铁素体相增加,奥氏体相减少;在950℃加热时铁素体中析出大量σ-相,使钢的性能恶化,在1 050~1 100℃固溶处理后,钢中铁素体相和奥氏体相各占50%, S32750钢具有较好的综合力学性能和优良的耐蚀性能。 相似文献
18.
19.
0.03C-4.5Si-14Cr-8Ni双相铸造不锈钢的组织和耐蚀性 总被引:1,自引:0,他引:1
本文对所设计的0.03C-4.5Si-14Cr-8Ni(DLNGG)双相铸造不锈钢进行了组织和耐蚀性研究。试验结果表明,该钢经1050℃1.5h水冷固溶处理后,得到铁素体-奥氏体双相组织,在浓硫酸介质中有良好的耐蚀性能。 相似文献
20.
利用Thermo-Calc热力学计算软件得到S32760(022Cr25Ni7Mo3WCuN)超级双相不锈钢凝固过程中的相图,确定了S32760双相钢是FA (铁素体-奥氏体)凝固模式,通过改变奥氏体和铁素体的形成元素的含量,确定在不同的化学成分下的热加工性能、Cr2N和σ相析出温度,得到S32760双相钢热加工温度区间随着奥氏体形成元素C、N、Ni、Mn含量的增加而变大,随着铁素体形成元素Si、Cr、Mo含量的增加而减小,而W对热加工性能没有影响。根据热力学计算,确定了最优的化学成分(/%:0.022C,0.30Si,0.80Mn,25.60Cr,6.20Ni,0.54Cu,3.50Mo,0.54W,0.27N),S32760双相钢最佳热塑性温度为1 195℃,Cr2N相的析出温度为1 050℃,σ相析出温度为1 020℃,热加工区间为145℃,并且通过了后续的现场实践验证。 相似文献