共查询到18条相似文献,搜索用时 78 毫秒
1.
2.
3.
4.
5.
研究了控轧控冷工艺参数中冷却速度和未再结晶区不同压下量对低合金钢的组织和性能的影响。结果表明,当提高未再结晶区的累计压下量时,使钢的晶粒得到细化、强度和韧性有较大提高。轧后冷却速度控制在5-12为宜。 相似文献
6.
结合马钢中板生产实际, 对控轧控冷工艺中快速轧制, 快速冷却, 大压下量开坯, 大压下率终轧及碳当量对温度控制的影响等主要方面进行了探讨, 并得出适当的工艺参数, 从而大大提高了钢板力学性能合格率。 相似文献
7.
以低焊接裂纹敏感性高强钢Q800CFE为试验材料,测试了该低碳贝氏体钢变形奥氏体的连续冷却转变行为,制定了CCT曲线。采用不同控轧控冷工艺进行了Q800CFE钢的生产试验,分析了不同终轧温度、终冷温度、冷却速度对Q800CFE组织性能的影响规律。试验结果表明,提高终轧温度,晶粒较粗大,可降低屈强比(YR);随着终冷温度从200 ℃升高至520 ℃,屈服强度(YS)、抗拉强度(TS)均下降,屈强比先升高后降低,在终冷温度为440 ℃时达到峰值(0.924);随着冷却速度从24 ℃/s增加到48 ℃/s,YS、TS、YR均升高,其中当冷却速度小于32 ℃/s时,增加幅度较大,当冷却速度大于32 ℃/s时,增加幅度较小。 相似文献
8.
9.
通过Gleeble3800热模拟机探究X80级管线钢控轧控冷过程中的组织演变规律,利用拉伸试验机、金相显微镜(OM)、扫描电镜(SEM)和透射电镜(TEM)对试验钢的力学性能和显微组织进行了研究。结果表明,随着钢的板厚规格减小,准多边形铁素体晶粒尺寸减小,强度升高。450 ℃模拟卷取过程中准多边形铁素体形核可进一步发生长大。富碳贝氏体组织主要是在450 ℃模拟卷取过程中由碳化物析出和相变所得的板条贝氏体组织组成,钢中形成的富碳贝氏体组织构成了带状组织。 相似文献
10.
11.
试验钢采用低碳Nb、Ti、Ni、Cu、Mo等合金化设计理念进行X100管线钢化学成分设计,用真空感应电炉冶炼,并经试验轧机TMCP工艺控制轧制,轧后弛豫并在机后快速冷却线中进行快速冷却。冷却后采用显微分析方法和力学性能测试等手段研究终冷温度对试验钢微观组织和性能的影响。结果表明:随着终冷温度的降低试验钢显微组织的变化规律是由多边形铁素体向准多边形铁素体、粒状贝氏体、贝氏体铁素体、马氏体型转变。在418 ℃时出现板条状贝氏体组织且随着终冷温度降低,组织中板条状贝氏体的含量增加,贝氏体板条束的直径变小板条间距变窄,提高了试验钢的强度和韧性指标。301 ℃时出现马氏体组织,试验钢的强韧性有所降低。未发现终冷温度对原始奥氏体晶粒尺寸有影响,因为影响试验钢原始奥氏体晶粒度的主要因数为控轧工艺。 相似文献
12.
控轧控冷是先进轴承钢的重要生产工艺。利用Gleeble3500热模拟试验机对G20CrNi2MoA轴承钢进行了控制轧制和控制冷却的热模拟试验,分析了变形温度、变形程度和冷却速率对G20CrNi2MoA优质滚动轴承钢微观组织和硬度的影响。基于试验结果,确定了开轧温度900 ℃、变形量30%的条件进行轧制,终轧后以5 ℃/s的冷却速率冷却到650 ℃,再以2 ℃/s的冷却速率冷却至室温的控轧控冷工艺。该工艺可获得比原始组织更细小均匀的贝氏体组织,试验钢综合力学性能有所提高,抗拉强度提升180 MPa、屈服强度变化较小、硬度提升50HV,断后伸长率提升2%。 相似文献
13.
控轧控冷是先进轴承钢的重要生产工艺。利用Gleeble3500热模拟试验机对G20CrNi2MoA轴承钢进行了控制轧制和控制冷却的热模拟试验,分析了变形温度、变形程度和冷却速率对G20CrNi2MoA优质滚动轴承钢微观组织和硬度的影响。基于试验结果,确定了开轧温度900 ℃、变形量30%的条件进行轧制,终轧后以5 ℃/s的冷却速率冷却到650 ℃,再以2 ℃/s的冷却速率冷却至室温的控轧控冷工艺。该工艺可获得比原始组织更细小均匀的贝氏体组织,试验钢综合力学性能有所提高,抗拉强度提升180 MPa、屈服强度变化较小、硬度提升50HV,断后伸长率提升2%。 相似文献
14.
屈强比是建筑用抗震钢板的重要性能指标。本文以低碳钢板为对象,研究了微合金化元素V、控轧控冷工艺参数对其力学性能与微观组织的影响。结果表明,随终轧温度升高,试验钢的抗拉强度与屈服强度都得到提高,且添加了V的试样的屈强比稍高于未添加V的试样。随终冷温度升高,钢板的屈强比降低,当终冷温度为560 ℃时,钢板可以获得较高强度与良好屈强比性能结合。添加V试样的晶粒细化明显,且随终冷温度升高,组织中M-A更加细小,分布更为均匀。 相似文献
15.
通过CCT曲线和实验室控轧控冷工艺试验,研究了440 MPa级船体钢的过冷奥氏体连续冷却(CCT)过程的相变以及组织性能。结果表明:试验钢在较宽的冷速范围内容易得到贝氏体组织,随着终轧温度的降低,试验钢的强韧性得到提高。轧后空冷条件下,试验钢得到铁素体+珠光体组织,韧性较好,但强度富余量相对较小。轧后加速冷却,试验钢的强度得到明显提升。模拟卷取温度为550 ℃时,试验钢的强韧性相对更好。综合分析,较优的控轧控冷工艺参数为:终轧温度840 ℃,轧后冷速(20±5) ℃/s,卷取温度550~560 ℃。 相似文献
16.
对一种试验性的高强建筑用钢进行了控制轧制和控制冷却处理,研究了终冷温度对试验钢力学性能和显微组织的影响,并对拉伸断口形貌进行了观察。结果表明,试验钢在终冷温度为450℃时具有较高的强塑性和低屈强比,能够满足780 MPa级高层低屈强比建筑用钢的要求;在终冷温度为650℃时,试验钢中的M-A岛状组织更加粗大、含量相对较高,形状主要以多边形和和条带状形态为主,而终冷温度为450℃时,试验钢中M-A岛状组织的数量相对较多,尺寸相对细小,且主要以颗粒状形态存在;贝氏体铁素体基体上弥散分布着颗粒状M-A岛的复相组织有利于提高试验钢的强塑性并降低屈强比;终冷温度为450℃时试验钢的抗拉强度、规定塑性延伸强度、断后伸长率和屈强比分别为1070 MPa、825 MPa、16. 6%和0. 771。 相似文献
17.
采用控轧控冷工艺生产车轮用双相钢 总被引:2,自引:1,他引:2
介绍了车轮用热轧双相钢板的控制轧制与控制冷却工艺、组织性能和冲压使用效果,该产品强度高、塑性好,屈强比为0.64~0.68。 相似文献
18.
控轧控冷工艺对低碳贝氏体钢组织性能的影响 总被引:5,自引:0,他引:5
通过在中厚板轧机上进行的控轧控冷工艺试验,研究了不同控轧控冷条件对低碳贝氏体钢DB685组织和性能的影响,得出增大变形量可得到细小均匀的晶粒组织,使钢材的强韧性提高;增大轧后冷却速度能有效地提高钢板强度。并提出了工业生产DB685钢的控轧控冷工艺参数:终轧温度≤850℃,轧后冷却速度≥5℃/s,终冷温度≤650℃。 相似文献