首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
通过刚性模型测压风洞试验研究了台风风场高湍流、强变异性等特征对大跨结构风压分布特性的影响。以某体育场罩棚为原型制作1∶300刚性模型,进行了常规B类风场和台风风场作用下的测压对比试验。基于试验数据,从测点风压和总体升力角度对两类风场作用下体育场罩棚结构的风压分布总体特性进行了分析,重点比较了典型测点在典型风向角下的风压分布规律及相互关系。结果表明:两类风场作用下平均风压的分布规律基本类似,但各风向角下台风风场中的屋盖总体升力比B类风场增大8%~25%;台风风场的高湍流特性导致基于极值负风压求得的各风向角下屋盖总体升力比B类风场大27%~46%,各测点的极值风压均明显高于常规B类风场作用下的对应值,比值约为1.13~1.70,因此对于台风多发地区的大型体育场屋盖设计,必须考虑台风风场高湍流所致的脉动风压增大效应。  相似文献   

2.
下击暴流风场的大气边界层风洞模拟研究   总被引:1,自引:0,他引:1  
使用可调导流板、挡板和粗糙元,在大气边界层风洞内实现了对1∶300和1∶600两种流场比例下击暴流风场的模拟,并与经典的理论剖面进行对比,对模型区域范围内风场的水平和竖向风速分布进行了较为详细的考察,在此基础上研究了一大跨度圆柱形屋盖在所模拟的下击暴流风场的风压系数分布特征,并与GB 50009-2001的B类地貌风场的结果进行比较。结果显示,所模拟的两种比例的下击暴流水平风剖面与理论值吻合较好,模拟出的下击暴流的竖向风剖面在一定高度范围内与水平风剖面有着相似的分布规律,且在模型区域具有较好的稳定性。圆柱形屋盖模型的试验结果表明,该屋盖在下击暴流风场测得的平均风压系数分布和B类地貌风场的结果非常接近,但极值风压系数小于B类地貌风场的试验结果。  相似文献   

3.
对某墙面开洞的圆弧形落地大跨钢屋盖机场航站楼风荷载特性进行了风洞试验研究;基于计算流体力学软件FIUENT 6.3,采用RNG ?κ-ε?湍流模型对墙面开洞屋盖结构的内外表面平均风压系数分布、分区净体型系数、风速矢量以及风场流迹线等风荷载特性进行了系统研究,并将数值模拟结果与风洞试验结果进行比较分析。结果表明:数值模拟的净体型系数和平均风压系数分布规律与试验结果吻合良好;墙面洞口全开的情况下,由于迎风洞口与背风洞口处压力差的作用,屋盖内表面风压均表现为风吸力,风压分布亦受到洞口的影响;墙面洞口对屋盖上表面平均风压系数分布影响较小;屋盖迎风挑檐区域受到风荷载下顶上吸的叠加作用,最大净体型系数达-2.83。  相似文献   

4.
近年来,围绕大跨度空间结构的风场特性研究、风振研究逐渐成为土木工程学科的热点研究方向,虽然获得了不少成果,但大多是建立在数值模拟分析基础上,少量学者进行了风洞试验研究。虽然风洞试验可以方便地模拟不同工况条件下的风环境和结构风振响应,但在真实建筑与模型相似比问题上又会使试验结果与真实数据之间存在一定误差。鉴于此,通过实测手段采集到了大跨度空间结构屋盖上方的风速、风向和风压数据,并基于实测数据,对其风荷载的风速、风向、湍流强度、积分尺度、脉动风压、风压相关性等指标进行了细致分析,分析结果真实可靠地说明了其屋盖上方的风场特征,对于大跨度空间结构的风振研究具有十分重要的意义。  相似文献   

5.
大跨度屋盖结构作为风敏感性较强的结构,风荷载是其控制荷载之一,可开合屋盖由于外形和结构的多变性,其风致效应更为复杂.以某大跨度可开合空间网架屋盖结构为研究对象,利用刚性测压风洞试验实测了屋盖内外表面的风压系数,对比了开合状态下屋盖表面风压的分布特征.基于本征正交分解(POD)及瞬态动力有限元分析,得到屋面节点的位移响应...  相似文献   

6.
台风作用下低矮房屋屋面角部峰值压力实测研究   总被引:2,自引:0,他引:2  
通过研制的可移动平坡屋面实验房及台风测试系统,开展了近地登陆台风风场和房屋表面风压现场实测,主要研究近地边界层登陆台风风场特性和低矮房屋风效应。主要根据1003号"灿都"台风的实测风速和风压数据,研究近地台风风场湍流特征和屋面角部峰值负压。分析来流方向不同地貌状况和台风不同区域的近地10m高度的湍流度、阵风因子、湍流积分尺度等湍流特征参数;探讨实验房屋面角部区域风压分布特征和角部区域峰值压力时间和空间的平均效应。在斜向风作用下迎风屋檐角部边缘区域测点具有较大的峰值负压和脉动风压,实测最小峰值负压为-4240.0Pa,峰值负压系数最小值为-13.5,风压系数概率分布为非高斯分布。评估了来流不同湍流强度和湍流积分尺度对角部区域风压的影响。并运用非高斯峰值因子极值分析方法对角部区域峰值负压进行极值分析,最后将角部区域风压系数的实测值及极值分析值与现行ASCE 7-10规范规定值进行比较,现行ASCE 7-10规范相对低估其屋檐角部边缘区域的峰值负压系数。  相似文献   

7.
一大跨度悬挑雨篷的风荷载及开洞比较   总被引:1,自引:0,他引:1  
黄鹏  顾明 《结构工程师》2004,20(4):51-55
对一座将建于强风区的悬挑屋盖(雨篷)结构模型进行了风洞试验,研究了大跨度悬挑屋盖上的风荷载特性。不同工况下屋盖表面的风压分布特性表明,周边建筑对所测建筑的风荷载有较大的干扰影响。还研究了在顶部开洞情况下屋盖表面的风压分布特性,结果表明开洞后屋盖上的风压有一定程度的降低。  相似文献   

8.
大跨度悬挑曲面屋盖结构属于风荷载敏感结构,又因其造型独特,风荷载特性复杂,故其抗风设计尤为重要。通过对青岛西站铁路站房进行1/200缩尺比的同步多点刚性模型测压风洞试验,系统分析了大跨度悬挑曲面屋盖在不同风向角下的平均压力系数分布规律及50年重现期极值压力统计值分布规律,并基于此数据分析屋盖体型变化对风压分布的影响。结果表明:屋盖整体呈现负压力;屋盖风压分布受风向角、屋盖体型的影响明显,在不同风向角下,屋盖体型对风压分布的影响程度不同;屋盖的挑檐、边角及屋脊处的平均压力系数绝对值要比其他区域大;站房表面极值压力绝对值最大值达4.4kN/m2,主要分布于站房的挑檐部分,因此在设计时需着重考虑挑檐的抗风设计。  相似文献   

9.
大跨度复杂屋盖结构风荷载的大涡模拟   总被引:5,自引:0,他引:5  
应用一种新的湍流脉动流场产生方法DSRFG(Discretizing and Synthesizing Random Flow Generation)[1]模拟风场实际的湍流边界条件,采用一种新的大涡模拟(Large Eddy Simulation,LES)的亚格子模型[2],基于Linux系统下软件平台Fluent6.3的并行计算技术,对深圳新火车站进行了数值风洞模拟。并将屋盖的平均风压、脉动风压计算结果与风洞试验数据进行了比较,表明数值模拟很好地反映了大跨度屋盖表面风压的分布情况,由其得到的风压系数与风洞试验数据有较好的吻合。表明本文的DSRFG方法以及新的大涡模拟亚格子模型的数值模拟技术是一种很好的预测大型、复杂结构表面风荷载的有效方法。并为进一步发展在复杂湍流环境下大跨度屋盖结构的风荷载数值风洞技术提供参考。  相似文献   

10.
近年来,围绕大跨度空间结构的风场特性研究、风振研究逐渐成为土木工程学科的热点研究方向,虽然取得了不少成果,但大多是建立在数值模拟分析基础上,少量学者进行了风洞试验研究。虽然风洞试验可以方便地模拟不同工况条件下的风环境和结构风振响应,但在真实建筑与模型相似比问题上又会使试验结果与真实数据之间存在一定误差,鉴于此,通过实测手段采集到了大跨度空间结构屋盖上方的风速、风向和风压数据,并基于实测数据,对其风荷载的湍流强度、积分尺度、阵风因子、风压分布、风速风向联合分布等指标进行了细致分析,分析结果真实可靠。  相似文献   

11.
绵竹市体育场的屋盖结构由悬挑钢屋面和落地飘带组成,结构形式较为复杂,使得屋盖表面风荷载分布和体育场风环境明显不同于常规的体育场。文章通过计算流体力学(CFD)对该结构进行了模拟,分析了该结构在不同风向角下的风压系数分布,讨论了屋盖开缝与否对风场的影响,并对体育场行人高度处的风环境进行了模拟评估。  相似文献   

12.
对青海花土沟机场航站楼长悬挑圆弧形大跨钢屋盖的风荷载特性进行风洞试验研究。基于计算流体力学软件Fluent 6.3,选用RNGκ-ε湍流模型对屋盖结构的平均风压系数分布、局部体型系数、风速矢量以及风场流迹线等风荷载特性进行系统研究。结果表明:数值模拟可以较好地反映实际风荷载对建筑物的作用,且具有直观呈现风场流动特性的优势;屋盖挑檐部分受到下顶上吸的叠加作用,长悬挑区域最大净体型系数试验值达-3.17,对屋盖结构极为不利;在前挑檐上开设洞口可有效减缓其承受风荷载作用,尤其能减缓斜向迎风作用下的风荷载作用。  相似文献   

13.
大跨悬挑平屋盖结构风荷载特性的试验研究   总被引:9,自引:0,他引:9  
对一大跨悬挑平屋盖模型进行了比较细致的风洞试验研究,分析了此类结构屋盖的平均局部体型系数和极值局部体型系数的分布特性,研究了均匀和B类两种不同流场对其风荷载分布特性的影响。结果显示结构在均匀流场和紊流的剪切流场所测得的平均和脉动风荷载特性均有显著的差别,文中进一步测量并讨论分析了屋盖上典型测点脉动风压的功率谱密度(PSD)以及空间不同位置之间的相干特性。最后针对此类形状屋面的特点和风压分布特性,提出了一种气动抗风措施,试验结果显示它可以有效削减屋盖风敏感处的风荷载值。  相似文献   

14.
基于CFD方法建立了数值风洞模型,采用标准k-ε湍流模型,数值模拟大跨度结构屋盖风场风压,获取其风载体型系数。首先,采用数值模拟计算落地球面网壳屋盖体型系数,并与文献风洞试验结果进行对比发现吻合较好,验证了本文计算方法和湍流模型参数选取的合理性。然后,研究了不同风向角下大跨屋盖风载体型系数的分布,分析及其产生的机理。计算结果表明:在不同风向角时,屋面风载体型系数变化较大。结合当地实际风环境对比分析后获得的最不利风压分布,才可应用于实际工程的抗风设计。  相似文献   

15.
针对两类屋面型式(上凸型和下凹型)、四种屋盖结构(单层马鞍形索网、轮辐式双层索网、索穹顶、弦支穹顶),设计制作了缩尺比分别为1∶250、1∶200两个试验模型,在B类地貌下开展了60组模型风洞试验,探究了全风向角下两类屋盖结构的风压峰值分布规律,分析了不同风向角、邻近建筑对目标建筑物风压特性的影响规律。结果表明:全风向角下来流方向无邻近建筑影响时,两类屋盖迎风面区域的负风压峰值最大,分别较上凸型和下凹型屋盖中间区域的负风压峰值高约3.0、1.5倍;屋盖中间区域风压峰值分布均匀,以承载负风压为主,仅下凹型屋盖中部出现正风压;风向角对屋盖风压分布的影响主要体现邻近建筑物的干扰上,其对屋盖平均和脉动风压系数的影响以来流方向无邻近建筑时最大、来流方向有邻近建筑时次之、尾流方向有邻近建筑物时最小;屋盖迎风面测点风压概率分布具有明显的非高斯特征,存在极大负压值,而屋盖中间和尾流区域的测点风压具有典型的正态分布特征。  相似文献   

16.
基于CFD方法建立了数值风洞模型,采用标准k-ε湍流模型,数值模拟大跨度结构屋盖风场风压,获取其风载体型系数.首先,采用数值模拟计算落地球面网壳屋盖体型系数,并与文献风洞试验结果进行对比发现吻合较好,验证了本文计算方法和湍流模型参数选取的合理性.然后,研究了不同风向角下大跨屋盖风载体型系数的分布,分析及其产生的机理.计算结果表明:在不同风向角时,屋面风载体型系数变化较大.结合当地实际风环境对比分析后获得的最不利风压分布,才可应用于实际工程的抗风设计.  相似文献   

17.
大跨屋盖结构风压脉动的非高斯特性   总被引:4,自引:0,他引:4  
借助刚性模型风洞动态同步测压试验,对大跨度平屋盖表面脉动风压的非高斯统计特性进行了系统研究。首先,根据测点风压时程及其概率密度分布,对具有非高斯分布特性的屋盖风压局部区域做出判断;然后,通过风压的时空间相关性,结合中心极限定理讨论局部呈现非高斯特性的原因;最后,基于测点风压的第三、四阶矩统计量对风压的非高斯特性进行描述,给出划分高斯非高斯区域的标准,并在此基础上对平屋盖进行了分区,通过区域划分揭示了不同区域的脉动风压形成机理,也体现出一些大跨屋盖结构不同于低矮房屋的流场特性。通过上述工作,增进了对大跨度屋盖表面风压分布特性的认识,为进一步探讨屋盖结构的抗风设计方法奠定了理论基础。  相似文献   

18.
为研究典型地貌上低矮房屋强风作用下的风荷载特性,课题组基于温州滨海建立的实验基地,获得了台风"菲特"(2013年)登陆时的风场及实验房风压实测数据。实测数据分析结果表明:实测表面各测点的瞬时风压相关性较强,脉动性较大;风从角部吹过时,墙面风压分布特征较为明显,屋面风压大小分布较为复杂;屋檐、迎风角部以及某些屋脊局部的风荷载非常大;墙面迎风面平均风压系数均值较大;背风面平均风压系数均值较小。屋面平均风压系数分布较为复杂,一些点负值非常大,少数点出现正值。墙面迎风角部测点和屋面迎风向屋檐处的脉动风压系数较大;背风面测点的脉动风压系数非常小。对于高度小于10 m的房屋,按照实际高度进行风压系数计算对抗风设计更加有利。  相似文献   

19.
针对大跨度悬挑屋盖结构风荷载特征的复杂性,进行了缩尺比为1:100的某体育场刚性模型风洞试验研究,得到了屋面结构上平均及脉动风压分布系数、同一测压点上下表面脉动风压相关系数以及不同距离测压点上脉动风压的相干函数,分析了同步和异步测量对计算结果造成的差别。通过对比体育场屋盖上离体育馆较近的测点与其他处测点的风压特性,评估体育馆对体育场风荷载的影响程度,为结构的抗风设计提供了依据。  相似文献   

20.
基于CFX10.0软件及LINUX大型并行服务器操作平台,采用剪切应力输运(SST)k-ω,模型对营口市奥体中心体育场屋盖进行了风压分布及风环境的数值模拟,得到了体育馆屋盖表面的平均风压系数,并分析了屋面的风压、湍动能分布特性,比较了屋盖在各风向角下总升力,得出了最不利风向角和分区风载体型系数,同时给出了双屋盖、仅ROOF1、仅ROOF2等三种计算模型时屋盖表面的风压分布.通过分析可以得到,随着区域位置的变化.体型系数值有很大不同,且其对风向角的敏感程度也不同;位于上游风场的屋盖和下部建筑(看台)的存在对体育场内流场及下游风场屋盖表面风压分布有很大的影响.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号