首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 62 毫秒
1.
高度有序多孔阳极氧化铝制备工艺的研究   总被引:1,自引:0,他引:1  
影响多孔阳极氧化铝(porous anodica lumina,PAA)形貌及结构等的因素有很多,如抛光铝片的表面粗糙度、电解液温度、氧化电压、氧化时间、搅拌速率等。本文采用二次阳极氧化法,以草酸为电解液,研究了高度有序AAO模板制备过程的主要工艺条件,并采用扫描电子显微镜对模板的形貌进行表征。结果表明,在电解液温度为12℃,氧化电压为40V能够得到高度有序的、孔径为80nm左右的多孔阳极氧化铝膜。  相似文献   

2.
高度有序多孔阳极氧化铝模板制备工艺研究   总被引:1,自引:0,他引:1  
在酸性电解液中,用二次阳极氧化法制备得到了高度有序的多孔阳极氧化铝(PAA)模板。采用金相显微镜观察了铝箔退火前后的表面形貌,并结合扫描电镜对多孔氧化铝薄膜的结构进行了表征。研究表明,高度有序多孔阳极氧化铝膜的制备依赖于铝箔是否经过预处理、氧化电压的大小、温度的稳定性和电解液的选择等。  相似文献   

3.
简要介绍了纳米氧化铝的特性,综述了制备纳米氧化铝的各种方法及其特点,指出我国纳米氧化铝工业化存在的问题,并对该产业前案做出展望。  相似文献   

4.
徐艳芳  李晓久  刘皓 《化工进展》2016,35(2):544-548
提出了以磷酸/草酸混合溶液为电解液制备高度有序锥形多孔阳极氧化铝(PAA)模板的方法。首先采用二次氧化的方法,得到了孔洞排列高度有序且孔间距为495nm的PAA模板。在此基础上,采用阳极氧化过程和扩孔过程交替进行的方法,制备了不同长径比的有序锥形PAA模板。实验结果显示:锥形PAA模板的长径比与总氧化时间线性相关,可达到100以上;还说明了分段氧化时间和分段扩孔时间与锥形孔道形貌之间的关系。这种特殊结构的PAA模板可以大大拓展其在合成金属或半导体纳米线、光电材料以及高分子材料方面的应用范围。  相似文献   

5.
阳极氧化铝模板由于制备简单,价格便宜,具有特殊的结构等得到了广泛的研究和应用.作者主要阐述了制备条件对模板的影响,介绍了阳极氧化铝模板的形成机理及其在合成与组装纳米材料方面的应用,最后提出了在多孔氧化铝模板研究中存在的一些问题,并对其应用前景做出展望.  相似文献   

6.
杜淼  孙中溪 《无机盐工业》2005,37(12):9-11,56
纳米氧化铝作为一种重要的纳米材料,在陶瓷材料、催化剂载体等领域有着广泛的应用.首先介绍了纳米氧化铝的主要形态,然后分别对纳米氧化铝的3种主要的制备方法(固相法、气相法、液相法)进行说明,并着重论述了目前应用比较广泛的液相法和介孔纳米氧化铝的制备.最后,提出了一些在纳米氧化铝的制备研究中有待解决的问题.  相似文献   

7.
氧化铝膜的制备   总被引:1,自引:0,他引:1  
制备氧化铝膜的具体过程包括:预处理(清洗→退火→除去自然氧化铝膜→电化学抛光)、阳极氧化(稳流氧化→除膜→稳压氧化)和后续处理(稀磷酸扩孔)。通过扫描电子显微镜(SEM)、X射线能谱仪(EDS)、X射线电子衍射(XRD)、精密pH计和TT-230涡流测厚仪,对其进行了表征。研究了电解液浓度,氧化温度、电压、时间和扩孔时间对膜形成的影响。确定了新的氧化工艺,拓展了氧化温度的范围(15.0~40.0℃)。制备出了具有高度有序的氧化铝模板。  相似文献   

8.
阳极氧化制备多孔氧化铝膜的研究   总被引:3,自引:0,他引:3  
在高纯度的铝片上 ,采用阳极氧化的方法制备多孔氧化铝膜 ,可以采用硫酸、草酸、磷酸作为电解液 ,电解液的种类将影响氧化铝膜上孔洞的孔径大小 ,同时电解液的浓度 (硫酸 2 % -2 0 %、草酸 1% -5 %、磷酸 10 % -30 % )、氧化电压 (硫酸电解液电压 10~ 30V ,磷酸电解液电压 30~ 80V ,草酸电解液电压 2 0~ 10 0V ,)、氧化时间等都会影响氧化铝孔膜的形态。  相似文献   

9.
以硫酸溶液为电解液,采用二次阳极氧化工艺制备高度有序的多孔阳极氧化铝模板.研究了电解液浓度、阳极氧化电压和阳极氧化温度对多孔阳极氧化铝模板形貌、孔径和孔间距的影响,并以高氯酸和丙酮的混合溶液为电解液,利用第三次阳极氧化,一步实现了多孔阳极氧化铝膜的通孔剥离,获得具有较大面积、韧性较好的通孔多孔阳极氧化铝模板.  相似文献   

10.
纳米氧化铝的制备与应用进展   总被引:20,自引:0,他引:20  
介绍了新型纳米材料-纳米氧化铝的制备方法和应用现状,对其研究前景作了简要展望。  相似文献   

11.
Nanoporous alumina which was produced by a conventional direct current anodization [DCA] process at low temperatures has received much attention in various applications such as nanomaterial synthesis, sensors, and photonics. In this article, we employed a newly developed hybrid pulse anodization [HPA] method to fabricate the nanoporous alumina on a flat and curved surface of an aluminum [Al] foil at room temperature [RT]. We fabricate the nanopores to grow on a hemisphere curved surface and characterize their behavior along the normal vectors of the hemisphere curve. In a conventional DCA approach, the structures of branched nanopores were grown on a photolithography-and-etched low-curvature curved surface with large interpore distances. However, a high-curvature hemisphere curved surface can be obtained by the HPA technique. Such a curved surface by HPA is intrinsically induced by the high-resistivity impurities in the aluminum foil and leads to branching and bending of nanopore growth via the electric field mechanism rather than the interpore distance in conventional approaches. It is noted that by the HPA technique, the Joule heat during the RT process has been significantly suppressed globally on the material, and nanopores have been grown along the normal vectors of a hemisphere curve. The curvature is much larger than that in other literatures due to different fabrication methods. In theory, the number of nanopores on the hemisphere surface is two times of the conventional flat plane, which is potentially useful for photocatalyst or other applications.PACS: 81.05.Rm; 81.07.-b; 82.45.Cc.  相似文献   

12.
多孔阳极氧化铝膜具有高度有序的独特的纳米级孔结构,引起了越来越多的关注和重视,可将其用于研制新型超精密分离膜或作为模板开发各种新型功能材料。本文总结了阳极氧化铝膜的制各方法及形成机理,并概述了其在气体、液体、生物化工的分离应用,对其在分离方面的发展趋势进行了分析及展望。  相似文献   

13.
ABSTRACT: A detailed study of the pore-widening rate of nanoporous anodic alumina layers as a function of the anodization voltage was carried out. The study focuses on samples produced under the same electrolyte and concentration but different anodization voltages within the self-ordering regime. By means of ellipsometry-based optical characterization, it is shown that in the pore-widening process, the porosity increases at a faster rate for lower anodization voltages. This opens the possibility of obtaining three-dimensional nanostructured nanoporous anodic alumina with controlled thickness and refractive index of each layer, and with a refractive index difference of up to 0.24 between layers, for samples produced with oxalic acid electrolytes.  相似文献   

14.
The effect in the Fabry-Pérot optical interferences of nanoporous anodic alumina films coated with gold is studied as a function of the porosity and of the gold thickness by means of reflectance spectroscopy. Samples with porosities between 14 and 70% and gold thicknesses (10 and 20 nm) were considered. The sputtering of gold on the nanoporous anodic alumina (NAA) films results in an increase of the fringe intensity of the oscillations in the spectra resulting from Fabry-Pérot interferences in the porous layer, with a reduction in the maximum reflectance in the UV-visible region. For the thicker gold layer, sharp valleys appear in the near-infrared (IR) range that can be useful for accurate spectral shift measurements in optical biosensing. A theoretical model for the optical behavior has also been proposed. The model shows a very good agreement with the experimental measurements, what makes it useful for design and optimization of devices based on this material. This material capability is enormous for using it as an accurate and sensitive optical sensor, since gold owns a well-known surface chemistry with certain molecules, most of them biomolecules.  相似文献   

15.
A study of reflective interference spectroscopy [RIfS] properties of nanoporous anodic aluminium oxide [AAO] with the aim to develop a reliable substrate for label-free optical biosensing is presented. The influence of structural parameters of AAO including pore diameters, inter-pore distance, pore length, and surface modification by deposition of Au, Ag, Cr, Pt, Ni, and TiO2 on the RIfS signal (Fabry-Perot fringe) was explored. AAO with controlled pore dimensions was prepared by electrochemical anodization of aluminium using 0.3 M oxalic acid at different voltages (30 to 70 V) and anodization times (10 to 60 min). Results show the strong influence of pore structures and surface modifications on the interference signal and indicate the importance of optimisation of AAO pore structures for RIfS sensing. The pore length/pore diameter aspect ratio of AAO was identified as a suitable parameter to tune interferometric properties of AAO. Finally, the application of AAO with optimised pore structures for sensing of a surface binding reaction of alkanethiols (mercaptoundecanoic acid) on gold surface is demonstrated.  相似文献   

16.
报道了用一步阳极氧化法在经过预处理的高纯铝片上制备具有纳米孔阵列结构的阳极氧化铝膜(AAM)的技术,并用扫描电子显微镜(SEM)和原子力显微镜(AFM)对样品形貌进行了表征。结果表明,高纯铝片在0~20℃、0.1~0.5 mol/L的草酸溶液中用30~60 V的直流电一步阳极氧化,再经过去铝和除阻挡层的过程,可制得纳米孔阵列阳极氧化铝膜。制得的阳极氧化铝膜中的孔,尺寸都在纳米级别,且大小均匀,相互平行排列成规整阵列,可用作制备纳米线阵列的模板。  相似文献   

17.
Superhydrophobic nanoporous anodic aluminum oxide (alumina) surfaces were prepared using treatment with vapor-phase hexamethyldisilazane (HMDS). Nanoporous alumina substrates were first made using a two-step anodization process. Subsequently, a repeated modification procedure was employed for efficient incorporation of the terminal methyl groups of HMDS to the alumina surface. Morphology of the surfaces was characterized by scanning electron microscopy, showing hexagonally ordered circular nanopores with approximately 250 nm in diameter and 300 nm of interpore distances. Fourier transform infrared spectroscopy-attenuated total reflectance analysis showed the presence of chemically bound methyl groups on the HMDS-modified nanoporous alumina surfaces. Wetting properties of these surfaces were characterized by measurements of the water contact angle which was found to reach 153.2 ± 2°. The contact angle values on HMDS-modified nanoporous alumina surfaces were found to be significantly larger than the average water contact angle of 82.9 ± 3° on smooth thin film alumina surfaces that underwent the same HMDS modification steps. The difference between the two cases was explained by the Cassie-Baxter theory of rough surface wetting.  相似文献   

18.
The influence of the anodization temperature and of the number of applied voltage cycles on the photonic properties of nanoporous anodic alumina-based distributed-Bragg reflectors obtained by cyclic voltage anodization is analyzed. Furthermore, the possibility of tuning the stop band central wavelength with a pore-widening treatment after anodization and its combined effect with temperature has been studied by means of scanning electron microscopy and spectroscopic transmittance measurements. The spectra for samples measured right after anodization show irregular stop bands, which become better defined with the pore widening process. The results show that with 50 applied voltage cycles, stop bands are obtained and that increasing the number of cycles contributes to enhancing the photonic stop bands (specially for the case of the as-produced samples) but at the expense of increased scattering losses. The anodization temperature is a crucial factor in the tuning of the photonic stop bands, with a linear rate of 42 nm/°C. The pore widening permits further tuning to reach stop bands with central wavelengths as low as 500 nm. Furthermore, the results also show that applying different anodization temperatures does not have a great influence in the pore-widening rate or in the photonic stop band width.  相似文献   

19.
A rugate filter based on nanoporous anodic alumina was fabricated using an innovative sinusoidal current profile with small current variation. The resulting structure consisted of highly parallel pores with modulations of the pore diameter along the pore axis and with no branching. The effect of the period time and the pore widening post-treatment was studied. From reflectance measurements, it was seen that the position of the reflection band can be tuned by adjusting the period time and the width by pore-widening post-treatments. We tested one of the rugate filters by infiltrating the structure with EtOH and water in order to evaluate its sensing capabilities. This method allows the fabrication of complex in-depth modulated nanoporous anodic alumina structures that open up the possibility of new kinds of alumina-based optical sensing devices.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号