首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 11 毫秒
1.
利用高温固相法制备Li1-xNaxFePO4(x=0,0.05,0.10,0.20)正极材料,并进行电化学性能测试。结果表明,Li0.95Na0.05FePO4材料表现出最好的电化学性能,在0.1C充放电时首次放电容量为107.6mA·h/g,循环20次后的放电容量为109.3mA·h/g,容量保留率几乎100%。在0.5C、1.0C和2.0C不同倍率下放电,容量保持率分别为80.22%、97.36%和91.90%。与纯LiFePO4相比,Li0.95Na0.05FePO4材料具有更高的可逆容量、更稳定的循环性能和更好的倍率性能。  相似文献   

2.
通过高温固相法合成铌掺杂Li(Ni0.8Co0.1Mn0.1)1-xNbxO2(x=0,0.01,0.02,0.03)正极材料,利用X射线衍射、扫描电子显微镜以及电化学测试手段分析铌掺杂的影响。结果显示,铌掺杂没有改变材料的α-NaFeO2层状结构;充放电循环结果显示Li(Ni0.8Co0.1Mn0.1)0.98Nb0.02O2在1C充放电倍率、电压为3.0~4.3 V条件下,经过50周循环后的容量保持率为95.9%,而没有经过掺杂处理材料的容量保持率为85.3%;交流阻抗测试结果证明了铌掺杂可以降低材料的电化学阻抗,从而提高材料电化学性能。  相似文献   

3.
采用试验测试的手段对碳热还原法制备氮化钒铁合金的性能进行表征,分析氮化温度等参数对N/V比例和产品氮化率的影响。研究结果表明:随配碳系数增大,N/V先增大后降低;随碳化温度上升,N/V不断增大;随氮化温度上升,N/V先增大后下降。当氮化温度增加后,氮化率为先上升后下降,最优氮化温度为1450℃;当氮化时间增加,氮化率逐渐上升并到达稳定,最优氮化时间为15 h。氮化钒铁的物相类型包括Fe相、NV相与少量的OV相。Fe在氮化钒铁内形成了不均匀分布的形态,大部分存在于氮化钒组织相内。  相似文献   

4.
为了解决氧化亚硅负极材料导电率低及循环性能差的问题,以聚丙烯酰胺(PAM)为液相碳源进行一次碳包覆,再通过化学气相沉积以甲烷混乙炔为气相碳源进行二次包覆,制备了具有含氮碳层的双层包覆氧化亚硅负极材料(SiOx@DC-N)。与纯气相包覆(SiOx@GC)以及纯液相包覆(SiOx@LC)的氧化亚硅负极材料相比,SiOx@DC-N展现出优异的倍率性能与循环性能,在4C(1C=1 500 mA/g)的电流密度下比容量达850.1 mAh/g,以5∶95混合石墨后制成18650圆柱电池,其在电流密度1C充放电700圈循环后容量保持率仍有92.70%。  相似文献   

5.
采用Co_3O_4为钴源,Li_2CO_3为锂源,Mg(OH)_2和H_3BO_3分别为镁源和硼源,按照化学计量比称取各原料并混合均匀后在高温条件下合成Li Co_(1-2y)Mg_yB_yO_2正极材料。采用扫描电镜(SEM)、X射线衍射(XRD)和恒电流间歇滴定(GITT)分别表征了样品的形貌、结构和锂离子扩散系数。将材料组装成CR2016型扣式电池,采用LAND测试仪进行电化学性能测试,结果表明,当掺杂的摩尔总量为2.0%时,材料在3.0~4.5 V范围内以0.2C充放电首次放电比容量达到190 m Ah/g,循环100次后容量保持率为88.6%。  相似文献   

6.
以吉林某地高纯球形化隐晶质石墨为原料,利用石油沥青对其进行包覆-炭化改性处理,制备锂离子电池负极材料,考察了沥青碳包覆量对隐晶质石墨负极材料结构及电化学性能的影响。结果表明,沥青碳包覆层改善了隐晶质石墨的表面形貌,改性后的隐晶质石墨具有更好的循环充放电性能和倍率充放电性能。当包覆量为14%时,经30次循环充放电后试样的放电容量保持率较未改性试样提高8.88%。当包覆量为18%时,在1 C电流密度下,试样放电容量保持率较未改性试样提高69.12%。  相似文献   

7.
煤炭的洁净加工与高效利用是国家实施能源发展战略的核心内容,而煤的材料化是实现其低碳高值化利用的重要途径之一。以自制煤基石墨为原料,采用液相氧化-热还原工艺制备三维层次孔煤基碳纳米片宏观体(CCNSs),利用扫描电镜(SEM)、透射电镜(TEM)、低温氮气吸附仪、X射线衍射(XRD)、拉曼光谱(Raman)和X射线光电子能谱(XPS)等手段表征其微观结构,并采用恒流充放电和循环伏安测试探究CCNSs用作锂离子电池负极材料的电化学性能。结果表明,煤基石墨经液相氧化-热还原处理可制备出富含多孔结构和石墨微晶片层的碳纳米片宏观体。氧化剂用量是影响CCNSs微观结构的重要因素,通过调节氧化剂的用量可实现对CCNSs中多孔结构和石墨微晶片层结构的有效调控。当氧化剂与煤基石墨的质量比为4时,CCNSs-3材料以相互交联的类石墨烯片层为主体骨架,辅以孔径为1.5~100 nm的"微孔-中孔-大孔"层次多孔结构,共同构筑成3D层次孔煤基碳纳米片宏观体,其石墨微晶含量约为38.9%,比表面积达285.6 m2/g,且含有5.47%的氧原子掺杂。在3D层次孔结构和石墨微晶片层的协同作用...  相似文献   

8.
LiCr0.05Ni0.15Mn1.8O4的合成和电化学性能   总被引:1,自引:0,他引:1  
通过溶胶-凝胶法合成尖晶石型锂离子电池正极材料LiCr0.05Ni0.15Mn1.8O4,并用XRD,SEM,FTIR,TGA表征其形貌和结构,采用电化学测试考察材料的电化学性能.结果表明,所合成的LiCr0.05Ni0.15Mn1.8O4具有与母体LiMn2O4同样完整的尖晶石结构,Cr3 (d3)和Ni2 (d8)部分取代了尖晶石结构八面体骨架中的Mn3 (d3).LiCrxNiyMn2-x-yO4(x=0.05,y=0.15)电极的良好容量归功于尖晶石结构中Cr和Ni对Mn位的掺杂而使主体结构得到了稳定.其首次充放电容量为120/100(mA·h·g-1,循环41次后容量保持率为98%.与单一LiMn2O4相比,在800℃合成的目标产物结构稳定性和循环可逆性好,循环伏安和充放电曲线表明该物种在充放电过程中Li 两步脱嵌过程有转变为一步的趋向.  相似文献   

9.
为改善富锂材料的电化学性能,使用Li3VO4对富锂锰基材料Li1.2Ni0.13Co0.13Mn0.54O2进行湿法包覆。对样品进行表征和电化学性能测试,结果表明,包覆工艺不会破坏富锂层状材料的结构;包覆物明显改善样品的电化学性能,其中3%包覆量的样品综合性能最好,首次放电比容量为243.2 mAh/g,库伦效率70.9%;在1C下循环50次后,容量保持率为87.2%。  相似文献   

10.
从成分、粒度、比表面积和结构形貌、离子价态、电池电化学性能、CV曲线和电化学阻抗等方面对3种不同组分的富锂锰基正极材料进行分析, 探讨富锂材料的本质特征, 深入分析富锂材料充放电过程反应机理。研究结果表明, 3种富锂材料中, Li1.18Ni0.13Co0.13Mn0.54O2样品的电化学性能最优, 在0.05C和2~4.8 V电压范围内, 初始放电比容量高达261 mAh/g。试验结果对富锂材料的选择有一定指导意义。  相似文献   

11.
陈嘉鑫  李灵均  谭磊 《矿冶工程》2021,41(4):141-145
采用高温固相法合成了硼掺杂LiNi0.825Co0.115Mn0.06O2高镍正极材料,并研究了硼掺杂量对LiNi0.825Co0.115Mn0.06O2正极材料微观形貌结构、电化学性能的影响。结果表明,经过硼掺杂后,材料的一次颗粒形貌由原来的类椭球状变为成径向排列的放射状,并且随硼掺杂量增加改变更加明显; 电化学性能测试发现,适量硼掺杂能够有效提高材料的循环性能; 1%硼掺杂的材料在2.7~4.3 V电压区间、2C倍率下充放电循环300圈后,容量保持率仍有91.46%,比未掺杂样品的容量保持率高5个百分点。  相似文献   

12.
以葡萄糖为碳源,采用碳热还原法制得一系列LiFePO4/C材料,其中葡萄糖的添加量分别为10,,15,,20,,25,和30,.通过XRD,SEM和恒流充放电等测试方法,研究了葡萄糖添加量对LiFePO4/C材料结构和电化学性能的影响.结果表明:当葡萄糖添加量为20,时,LiFePO4/C材料以0.2C充放电,放电比容量为140.6mA· h/g;1 C倍率50次循环后,容量保持率达到97,;以0.2C充电,在0.2C,1C,2C,5C和10 C不同倍率下放电,其中10 C倍率放电比容量为89.1mA· h/g,合成材料表现出良好的综合电化学性能.经XRD和SEM测试发现,制得的材料均为橄榄石型结构,不同碳含量对材料的颗粒尺寸有一定的影响.  相似文献   

13.
习小明  廖达前 《矿冶工程》2013,33(1):97-100,105
研究了多相氧化还原法制备钴酸锂的烧结、烧结产物的物理和电化学性能,确定了多相氧化还原法合成的钴酸锂的烧结制度:升温速度165℃/h、烧结温度850℃、恒温时间5 h。此条件下所得产物的电化学性能优异,其初始放电容量大于150 mAh/g,在前8个循环中,平均每个循环的衰减率仅为0.04%。  相似文献   

14.
采用化学分析,XRD,SEM等检测手段,对碳热还原法制备的氮化钒铁中铁元素赋存状态进行了系统研究,对配碳系数、反应温度对氮化钒铁的氮钒比影响规律进行了系统研究。结果表明,以V_2O_3为原料,在高温下进行碳热还原反应制备的氮化钒铁,钒原子氮化形成氮化钒包覆层,铁主要以Fe形式存在,不均匀分布于氮化钒颗粒内部。反应条件直接影响氮化钒铁的氮钒比,制备高质量的氮化钒铁,需要控制较佳的工艺参数。  相似文献   

15.
以磷酸铁锂为正极活性材料, 采用直接混合法, 研究了添加质量分数为0.5%、1%和1.5%的石墨烯对锂离子电容器电化学性能的影响。利用扫描电子显微镜、X射线衍射分别对材料形貌、结构等进行了分析, 并比较了掺杂不同石墨烯的电极材料恒流充放电性能和循环性能。结果表明, 石墨烯是一种三维自支撑片状结构, 粉末材料是独立形成的, 并且不易团聚, 纳米磷酸铁锂颗粒分散均匀, 颗粒呈类球型状; 掺杂不同量的石墨烯对磷酸铁锂本身结构几乎没有影响; 掺杂1.5%石墨烯电极性能最好, 高倍率5C时, 放电比容量96 mAh/g, 容量保持率77%, 当恢复到0.1C时, 放电比容量是初始容量的95%, 循环500圈后容量保持率达92%, 阻抗最小,为0.3661 Ω。  相似文献   

16.
以共沉淀法合成了锂离子电池正极材料LiNi0.8Co0.2-xAlxO2(x=0,0.03,0.05)。对合成的层状材料采用X射线衍射(XRD)、扫描电镜(SEM)和差示扫描量热分析-热重分析(DSC-TG)进行了结构、形貌和热分析,对LiNi0.8Co0.2-xAlxO2材料以0.2C倍率进行充放电测试,用循环伏安法分析充放电过程中的相变。实验结果表明,掺杂Al后材料的放电容量下降15mAh/g,但相变得到抑制,材料的稳定性和循环性能提高。  相似文献   

17.
采用湿化学方法,结合高温固相反应法制备了锂离子电池正极材料Li2NixMn1-xSiO4(x=0.4,0.5,0.6,0.7),以蔗糖为碳源对Li2NixMn1-xSiO4材料进行表面包覆.运用XRD、SEM、循环伏安测试和充放电循环等方法表征了Li2NixMn1-xSiO4的结构与电化学性能.XRD结果表明,Li2NixMn1-xSiO4/C固溶体属于Pmn21空间群结构.制备的Li2Nio.4Mn0.6SiO4/C具有较好的电化学性能,首次循环的充放电容量分别为219.9,132.4 mAh/g,循环20次后的可逆容量为72 mAh/g.  相似文献   

18.
以硝酸铁、磷酸二氢铵、氢氧化锂为原料,以聚乙二醇PEG-4000为螯合剂和碳源,采用溶胶-凝胶法制备了LiFePO4/C。利用XRD、SEM、电化学性能测试等手段对LiFePO4/C的物相结构、形貌、电化学性能进行表征。结果表明:PEG-4000作为螯合剂和碳源,使得样品的粒径较小且分布均匀。650℃烧结18h所合成的样品具有最佳的电化学性能,0.1C首次充、放电容量分别为152.7、150.6 mAh/g;循环30次后容量为146 mAh/g,容量衰减率为3.05%。  相似文献   

19.
以四水合钼酸铵(AHM)、乙二醇(EG)为原料,采用水热法合成MoO2材料,用X射线衍射(XRD)、扫描电子显微镜(SEM)、电化学测试研究材料的结构和电化学性能。结果表明,水热法合成的MoO2粒径为20~30 nm,材料表现出良好的电化学性能。首次放电比容量为664.3 m A·h/g,充放电效率较高,首次充放电的库伦效率高达94%,在20个充放电循环过后,仍有较高的容量保持率,MoO2作为锂离子电池负极材料展现出良好的容量存储和循环性能。  相似文献   

20.
采用共沉淀法制备Ni0.5Co0.2Mn0.3(OH)2前驱体,并通过高温固相法合成LiNi0.5Co0.2Mn0.3O2正极材料,研究了反应时间对Ni0.5Co0.2Mn0.3(OH)2前驱体和LiNi0.5Co0.2Mn0.3O2正极材料的形貌、结构以及电化学性能的影响。结果表明,随着反应时间增加,前驱体和正极材料的二次颗粒粒径逐渐增大;若反应时间过短,二次颗粒粒径小,易加剧电化学循环过程中材料与电解液的副反应,正极材料循环性能较差;若反应时间过长,二次颗粒粒径过大,增加了锂离子扩散路径,也不利于正极材料在高倍率下的循环。反应16 h制备的LiNi0.5Co0.2Mn0.3  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号