共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
针对锂离子电池剩余寿命预测精度低、泛化能力差等问题,提出基于改进粒子滤波的预测方案。首先,提出双高斯模型作为退化经验模型,拟合锂离子电池的容量退化过程。然后,通过先验知识设置退化模型的初始参数,并利用粒子滤波方法进行参数更新。针对预测过程中出现的粒子退化问题,提出高斯混合方法进行粒子重采样,拟合重采样过程中粒子复杂的非线性分布和长尾分布,保证预测结果的概率密度分布状况均匀且集中。最后在不同的数据集上进行了实验验证,结果表明所提出的改进粒子滤波方案具有较高的精度和较强的鲁棒性。 相似文献
3.
4.
6.
针对极限学习机在预测锂离子电池剩余寿命过程中的不稳定性,提出利用混合粒子群优化算法对极限学习机预测模型优化的方法。通过改进的粒子群优化算法对极限学习机的输入端进行寻优处理,不但能够使模型的预测精度有进一步提高,而且大大增加了锂离子电池单次剩余寿命预测结果的可信度。利用NASA PCoE公开的锂离子电池数据进行仿真实验并评估该模型的预测性能,然后与标准的极限学习机预测模型预测结果进行对比,统计结果表明该方法使预测误差控制在2%左右。 相似文献
7.
针对锂离子电池健康因子衰退指标预测不佳,影响电池有效更换的问题,设计基于贝叶斯理论的新能源锂离子电池剩余寿命预测方法。提取新能源锂离子电池的衰退特征,并分析电池衰退变化;通过贝叶斯理论确定电池剩余寿命先验分布,提高电池剩余寿命预测的置信度;根据先验分布结果,构建锂离子电池剩余寿命预测模型,对电池寿命期望函数进行分析,进而实现新能源锂离子电池的有效利用。采用对比实验的形式,验证了该预测方法新能源锂离子电池剩余寿命预测效果更佳,可以应用于实际生活中。 相似文献
8.
随着新能源汽车的迅速发展,锂离子电池已得到广泛应用。准确预测锂离子电池剩余有效寿命(RUL)对于合理规划电池使用至关重要。目前,机器算法和模型预测已广泛应用于电池剩余有效寿命的预测中。本文基于数据驱动的方法进行锂离子电池剩余有效寿命预测,通过使用相关向量机(RVM)将长期预测分为多段短期预测,并结合自相关函数、灰色关联度模型、卡尔曼滤波器(KF)进行模型优化与改进,改进后的RVM模型在三组目标电池RUL预测中的相对误差分别为5.46%、7.14%和6.29%,与其他几种预测模型的对比结果表明该模型优于其他模型。 相似文献
10.
针对目前锂离子电池剩余寿命预测模型精度低、泛化性差的问题,在一种基于充放电健康特征提取的锂离子电池剩余寿命估计方法的基础上,增加了健康因子和实际容量之间的相关性分析,具体方法是:从锂离子电池充放电电压、电流、温度曲线变化趋势中提取若干潜在健康因子,并利用主成分分析(PCA)去除数据冗余性,得到代表退化特征的融合健康因子。结合自适应遗传算法(AGA)优化了Elman预测模型。结果表明所建立的PCA-AGA-Elman神经网络预测模型误差控制在1.5%之内,可作为锂离子电池的剩余使用寿命(RUL)预测模型。 相似文献
11.
针对锂离子电池的容量在线测量困难的问题,提出了一种基于优化的融合型间接健康因子和改进的最小二乘支持向量机的锂离子电池剩余寿命间接预测方法.首先采用自适应健康因子提取方法提取了等电压升充电时间序列和等电流降充电时间序列,通过健康因子的线性组合和Box-Cox变换构建了优化的融合型健康因子.然后针对最小二乘支持向量机的超参数调整困难的问题,提出了基于粒子群优化的改进算法.在此基础上,构建了基于优化的融合型健康因子的锂离子电池剩余寿命间接预测方法.实验结果表明,提出的间接预测方法能够较好地拟合容量的退化过程,同时预测精度比基于单一健康因子的方法更高. 相似文献
12.
电池剩余使用寿命预测是电池管理系统中的关键环节,对于电池的安全运行至关重要。由于电池退化受到诸多因素的影响,剩余寿命预测仍然面临着多方面挑战。近年来,机器学习算法由于强大的非线性学习能力而受到广泛关注,并且逐渐成为剩余使用寿命预测的可靠主流方法。梳理了各类基于机器学习的剩余使用寿命预测算法,分析其优缺点,并总结和展望了未来的改进方向。 相似文献
13.
14.
《电力学报》2021,(1)
针对锂离子电池剩余寿命难以预测以及预测结果不精确等问题,提出了采用电池循环剩余容量数据作为时间序列样本,基于经验模态分解对各分解出的子序列建立自回归移动平均(ARMA)预测模型,并经过Pearson相关系数验证各子序列的相关性,加权重构后实现电池剩余寿命(RUL)预测。实验采用NASA锂离子电池数据集,用均方根误差(RMSE)和平均绝对误差(MAE)作为评价标准,对所提模型(EMD-ARMA预测模型)、Elman神经网络模型和ARMA模型的预测结果进行对比分析。试验结果表明,在正常工况下,所提的EMD-ARMA预测模型计算的RMSE和MAE的值为三个模型中的最小值,预测误差小于1%;并且预测误差随预测起始点的后移会逐渐减小,证明所提预测算法在长期预测上有较稳定的收敛性,预测精度也有显著提高。 相似文献
15.
16.
17.
锂离子电池的剩余使用寿命(RUL)预测可以评估电池的可靠性,降低电池使用的风险并为电池维护提供理论依据.结合卷积神经网络(CNN)与双向长短期记忆(Bi-LSTM)网络的优点,提出一种考虑多种寿命衰退特征与数据时序性的CNN-Bi-LSTM网络模型用于锂离子电池RUL预测.通过仿真得到CNN超参数,选择相关性高的特征参数作为预测输入量,最后在NASA锂离子电池老化数据集上进行仿真实验.实验结果表明CNN-Bi-LSTM网络模型能准确预测锂离子电池RUL,与其他网络模型相比,具有网络模型参数少、占用内存小的优势,在精确度和收敛性上都有较好表现. 相似文献
18.
19.
20.
针对锂离子电池退化数据噪声大、数据量少以及不同生命时期的退化趋势不同而导致的模型预测精度低、泛化能力差等问题,从数据预处理、预测模型的构建与训练三方面展开研究:首先结合变分自编码器(VAE)和生成对抗网络模型(GAN)构建VAE-GAN模型生成多组数据,实现电池的退化数据增强;然后结合降噪自编码器(DAE)和长短时记忆(LSTM)神经网络构建DAE-LSTM模型进行数据降噪和容量预测,为了降低模型参数,此过程中的数据降噪和预测共享同一个损失函数;最后先利用生成数据对DAE-LSTM模型进行预训练,再利用真实数据对其进行迁移训练。在CACLE和NASA公开数据集进行性能测试,实验结果表明该文所提方法精度高、鲁棒性强,能够有效提高锂离子电池剩余寿命的预测效果。 相似文献