首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
The phosphorylation state of three identified neural-specific protein kinase C substrates (RC3, GAP-43/B-50, and MARCKS) was monitored in hippocampal slices of mice lacking the gamma-subtype of protein kinase C and wild-type controls by quantitative immunoprecipitation following 32Pi labeling. Depolarization with potassium, activation of glutamate receptors with glutamate, or direct stimulation of protein kinase C with a phorbol ester increased RC3 phosphorylation in wild-type animals but failed to affect RC3 phosphorylation in mice lacking the gamma-subtype of protein kinase C. Our results suggests the following biochemical pathway: activation of a postsynaptic (metabotropic) glutamate receptor stimulates the gamma-subtype of protein kinase C, which in turn phosphorylates RC3. The inability to increase RC3 phosphorylation in mice lacking the gamma-subtype of protein kinase C by membrane depolarization or glutamate receptor activation may contribute to the spatial learning deficits and impaired hippocampal LTP observed in these mice.  相似文献   

2.
The activation of protein kinase C (PKC) found in diabetic glomeruli and glomerular mesangial cells cultured under high glucose conditions has been proposed to contribute to the development of diabetic nephropathy. However, the abnormalities distal to PKC have not been fully elucidated yet. Herein, we provide the evidence that mitogen-activated protein kinase (MAPK) cascade, an important kinase cascade downstream to PKC and an activator of cytosolic phospholipase A2 (cPLA2) by direct phosphorylation, is activated in glomeruli isolated from streptozotocin-induced diabetic rats. MAPK cascade was also activated in glomerular mesangial cells cultured under high glucose (27.8 mmol/l) conditions for 5 days, and the activation of MAPK cascade was inhibited by treating the cells with calphostin C, an inhibitor of PKC. Furthermore, the activities of cPLA2 also increased in cells cultured under the same conditions and this activation was inhibited by both calphostin C and PD 098059, an inhibitor of MEK (MAPK or extracellular signal-regulated kinase [ERK] kinase). These results indicate that MAPK cascade is activated in glomeruli and mesangial cells under the diabetic state possibly through the activation of PKC. Activated MAPK, in turn, may induce various functional changes of mesangial cells at least through the activation of cPLA2 and contribute to the development of diabetic nephropathy.  相似文献   

3.
We have previously reported that hydrogen peroxide (H2O2) induced a considerable increase of phospholipase D (PLD) activity and phosphorylation of mitogen-activated protein (MAP) kinase in PC12 cells. H2O2-induced PLD activation and MAP kinase phosphorylation were dose-dependently inhibited by a specific MAP kinase kinase inhibitor, PD 098059. In contrast, carbachol-mediated PLD activation was not inhibited by the PD 098059 pretreatment whereas MAP kinase phosphorylation was prevented. These findings indicated that MAP kinase is implicated in the PLD activation induced by H2O2, but not by carbachol. In the present study, H2O2 also caused a marked release of oleic acid (OA) from membrane phospholipids in PC12 cells. As we have previously shown that OA stimulates PLD activity in PC12 cells, the mechanism of H2O2-induced fatty acid liberation and its relation to PLD activation were investigated. Pretreatment of the cells with methylarachidonyl fluorophosphonate (MAFP), a phospholipase A2 (PLA2) inhibitor, almost completely prevented the release of [3H]OA by H2O2 treatment. From the preferential release of OA and sensitivity to other PLA2 inhibitors, the involvement of a Ca2+-independent cytosolic PLA2-type enzyme was suggested. In contrast to OA release, MAFP did not inhibit PLD activation by H2O2. The inhibitory profile of the OA release by PD 098059 did not show any correlation with that of MAP kinase. These results lead us to suggest that H2O2-induced PLD activation may be mediated by MAP kinase and also that H2O2-mediated OA release, which would be catalyzed by a Ca2+-independent cytosolic PLA2-like enzyme, is not linked to the PLD activation in PC12 cells.  相似文献   

4.
5.
Incubation of the acutely dissected rat hippocampal slices in calcium-containing media resulted in spontaneous activation-translocation of classical PKC isoforms and their subsequent (especially gamma-type) proteolytic degradation. These changes were blocked by calpain inhibitor MDL 28 170 in 100 microM concentration. Rat hippocampal slices were metabolically prelabelled with 32Pi and stimulated with NMDA/glycine, depolarization or phorbol dibutyrate (PDBu) treatment. The basal phosphorylation of specific PKC substrates (MARCKS, neuromodulin and neurogranin) was significantly reduced in non-stimulated slices by MDL pretreatment. In contrast, only the slices where calpain activity was inhibited responded to further NMDA or phorbol dibutyrate stimulation by a substantial increase of PKC-dependent protein phosphorylation. It is concluded that the PKC phosphorylation system is severely affected by non-specific activation and a subsequent, calpain-dependent proteolysis in the acutely prepared hippocampal slices. Calpain inhibition by 100 microM MDL partially prevented these changes and increased stimulus-dependent phosphorylation of PKC-specific protein substrates.  相似文献   

6.
7.
We have recently shown that AVP causes a protein kinase C (PKC)-dependent increase in ACTH release and biosynthesis in ovine anterior pituitary cells. In these cells, AVP also causes the translocation of PKC from the cytosol to the cell membrane which is maximal at 5 min, but the intracellular events distal to protein kinase C activation that underlie ACTH secretion have not been well characterized to date. Since the MARCKS protein has been implicated in neurosecretion and is phosphorylated by PKC in synaptosomes, studies were carried out to determine whether AVP might cause MARCKS phosphorylation in the ovine anterior pituitary, and to determine whether this phenomenon might be temporally correlated with PKC translocation and the release of ACTH. When cytosolic fractions of rat brain, ovine anterior pituitary, and cultured ovine anterior pituitary cells were incubated with purified PKC, several proteins were phosphorylated including those in the region of 83-85 kDa. After precipitation of the proteins with 40% acetic acid, the 83-85 kDa phosphoproteins were selectively recovered in the acid soluble phase. Phosphopeptide maps of either the 83 or 85 kDa proteins were generated with Staphylococcus aureus V8 protease and revealed 13 and 9 kDa phosphopeptides, which are characteristic of the authentic MARCKS protein. An identical phosphopeptide map was also obtained when the MARCKS protein was selectively extracted from intact 32P-labeled anterior pituitary cells. MARCKS phosphorylation was markedly increased when ovine anterior pituitary cells were exposed to 1 microM phorbol 12-myristate 13-acetate (PMA). When the cells were exposed to 1 microM AVP, MARCKS phosphorylation increased at 15 s and reached the maximal plateau value at 30 s. MARCKS phosphorylation then started to diminish at 2 min, and baseline levels were attained by 10 min. In the same cells, AVP stimulated ACTH release in a biphasic manner - during the first 30 s, there resulted a rapid burst of ACTH secretion that was followed by a slower, but sustained rate of secretion. We conclude that: (1) AVP causes a rapid, and reversible, phosphorylation of the MARCKS protein in the ovine anterior pituitary; (2) since the AVP-induced increase in MARCKS phosphorylation occurs much earlier in these cells than does PKC trans-location, MARCKS phosphorylation may provide a more sensitive index of the onset of PKC activation than the translocation assay; (3) the close temporal association between MARCKS phosphorylation and the rapid early release of ACTH suggests that MARCKS phosphorylation may be involved in the initial intracellular events that underly exocytosis of the hormone.  相似文献   

8.
Phorbol ester-sensitive EL4 murine thymoma cells respond to phorbol 12-myristate 13-acetate with activation of ERK mitogen-activated protein kinases, synthesis of interleukin-2, and death, whereas phorbol ester-resistant variants of this cell line do not exhibit these responses. Additional aspects of the resistant phenotype were examined, using a newly-established resistant cell line. Phorbol ester induced morphological changes, ERK activation, calcium-dependent activation of the c-Jun N-terminal kinase (JNK), interleukin-2 synthesis, and growth inhibition in sensitive but not resistant cells. A series of protein kinase C activators caused membrane translocation of protein kinase C's (PKCs) alpha, eta, and theta in both cell lines. While PKC eta was expressed at higher levels in sensitive than in resistant cells, overexpression of PKC eta did not restore phorbol ester-induced ERK activation to resistant cells. In sensitive cells, PKC activators had similar effects on cell viability and ERK activation, but differed in their abilities to induce JNK activation and interleukin-2 synthesis. PD 098059, an inhibitor of the mitogen activated protein (MAP)/ERK kinase kinase MEK, partially inhibited ERK activation and completely blocked phorbol ester-induced cell death in sensitive cells. Thus MEK and/or ERK activation, but not JNK activation or interleukin-2 synthesis, appears to be required for phorbol ester-induced toxicity. Alterations in phorbol ester response pathways, rather than altered expression of PKC isoforms, appear to confer phorbol ester resistance to EL4 cells.  相似文献   

9.
The ability of the constitutively active fragment of protein kinase C (PKM) to modulate N-methyl-D-aspartate (NMDA)-activated currents in cultured mouse hippocampal neurons and acutely isolated CA1 hippocampal neurons from postnatal rats was studied using patch-clamp techniques. The responses of two heterodimeric combinations of recombinant NMDA receptors (NR1a/NR2A and NR1a/NR2B) expressed in human embryonic kidney 293 cells were also examined. Intracellular applications of PKM potentiated NMDA-evoked currents in cultured and isolated CA1 hippocampal neurons. This potentiation was observed in the absence or presence of extracellular Ca2+ and was prevented by the coapplication of the inhibitory peptide protein kinase inhibitor(19-36). Furthermore, the PKM-induced potentiation was not a consequence of a reduction in the sensitivity of the currents to voltage-dependent blockade by extracellular Mg2+. We also found different sensitivities of the responses of recombinant NMDA receptors to the intracellular application of PKM. Some potentiation was observed with the NR1a/NR2A subunits, but none was observed with the NR1a/NR2B combination. Applications of PKM to inside-out patches taken from cultured neurons increased the probability of channel opening without changing single-channel current amplitudes or channel open times. Thus, the activation of protein kinase C is associated with potentiation of NMDA receptor function in hippocampal neurons largely through an increase in the probability of channel opening.  相似文献   

10.
In this study we have used the presynaptic-rich rat cerebrocortical synaptosomal preparation to investigate the proteolytic cleavage of the amyloid precursor protein (AbetaPP) by the alpha-secretase pathway within the betaA4 domain to generate a soluble secreted N-terminal fragment (AbetaPPs). AbetaPP was detected in crude cortical synaptosomal membranes, although at a lower density than that observed in whole-tissue homogenates. Protein kinase C (PKC) activation induced a translocation of the conventional PKC isoform beta1 and novel PKCepsilon from cytosol to membrane fractions, but there was no alteration in the proportion of AbetaPP associated with the Triton-soluble and -insoluble fractions. AbetaPPs was constitutively secreted from cortical synaptosomes, with this secretion being enhanced significantly by the direct activation of PKC with phorbol ester. The PKC-induced secretion of AbetaPPs was only partially blocked by the PKC inhibitor GF109203X (2.5 microM), whereas the phosphorylation of the myristoylated alanine-rich C kinase substrate (MARCKS) protein was significantly inhibited by GF109203X. The differential sensitivities of the MARCKS phosphorylation and AbetaPPs secretion to GF109203X may imply that different PKC isoforms are involved in these two events in the synaptosomal system. These findings strongly suggest that the alpha-secretase activity leading to the secretion of AbetaPPs can occur at the level of the presynaptic terminal.  相似文献   

11.
Although the signaling pathways leading to hydrogen peroxide (H2O2)-induced endothelial monolayer permeability remain ambiguous, cytoskeletal proteins are known to be essential for maintaining endothelial integrity and regulating solute flux through the monolayer. We have recently demonstrated that thrombin-induced actin reorganization in bovine pulmonary artery endothelial cells (BPAEC) requires activation of both myosin light chain kinase (MLCK) and protein kinase C (PKC). Therefore, the present study was designed to investigate the effects of H2O2 on actin reorganization in BPAEC. H2O2 initiated sustained recruitment of actin to the cytoskeleton and transient myosin recruitment in a time- and concentration-dependent manner. The H2O2-induced actin recruitment was significantly inhibited by the calmodulin antagonists, W7 and TFP, but not by the MLCK inhibitor, KT5926, nor the PKC inhibitors, H7 and calphostin C. H2O2 also caused actin filament rearrangement in BPAEC with disruption of the dense peripheral bands and formation of stress fibers. These alterations occurred prior to actin translocation to the cytoskeleton and are prevented by inhibition of either MLCK or PKC. High concentrations of H2O2 transiently attenuated PKC activity but slightly increased the phosphorylation of the prominent PKC substrate and actin-binding protein, myristoylated alanine-rich C kinase substrate (MARCKS), by 5 min. However, MARCKS phosphorylation was reduced to below basal levels by 30 min. On the other hand, H2O2 induced a time- and dose-dependent phosphorylation of myosin light chains which was eliminated by both MLCK and PKC inhibitors. These data suggest that MLCK contributes to H2O2-induced myosin light chain phosphorylation and actin rearrangement and that PKC may play a permissive role. Neither of these enzymes appears to be involved in the H2O2-induced recruitment of actin to the cytoskeleton.  相似文献   

12.
The thrombopoietin (TPO) receptor is expressed in the megakaryocytic lineage from late progenitors to platelets. We investigated the effect of TPO on the extracellular signal-regulated kinase (ERK) activation pathway in human platelets. TPO by itself did not activate ERK1, ERK2 and protein kinase C (PKC), whereas TPO directly enhanced the PKC-dependent activation of ERKs induced by other agonists including thrombin and phorbol esters, without affecting the PKC activation by those agonists. TPO did not activate the mitogen-activated protein kinase/ERK kinases, MEK1 and MEK2, but activated Raf-1 and directly augmented the PKC-mediated MEK activation, suggesting that TPO primarily potentiates the ERK pathway through regulating MEKs or upstream steps of MEKs including Raf-1. The MEK inhibitor PD098059 failed to affect not only thrombin-induced or phorbol ester-induced aggregation, but also potentiation of aggregation by TPO, denying the primary involvement of ERKs and MEKs in those events. ERKs and MEKs were located mainly in the detergent-soluble/non-cytoskeletal fractions. ERKs but not MEKs were relocated to the cytoskeleton following platelet aggregation and actin polymerization. These data indicate that TPO synergizes with other agonists in the ERK activation pathway of platelets and that this synergy might affect functions of the cytoskeleton possibly regulated by ERKs.  相似文献   

13.
In gastric chief cells, agents that activate protein kinase C (PKC) stimulate pepsinogen secretion and phosphorylation of an acidic 72-kDa protein. The isoelectric point and molecular mass of this protein are similar to those for a common PKC substrate; the MARCKS (for Myristoylated Alanine-Rich C Kinase Substrate) protein. We examined expression and phosphorylation of the MARCKS-like protein in a nearly homogeneous suspension of chief cells from guinea pig stomach. Western blotting of fractions from chief cell lysates with a specific MARCKS antibody resulted in staining of a myristoylated 72-kDA protein (pp72), associated predominantly with the membrane fraction. Using permeabilized chief cells, we examined the effect of PKC activation (with the phorbol ester PMA), in the presence of basal (100 nM) or elevated cellular calcium (1 microM), on pepsinogen secretion and phosphorylation of the 72-KDa MARCKS-like protein. Secretion was increased 2.3-, 2.6-, and 4.5-fold by incubation with 100 nM PMA, 1 microM calcium, and PMA plus calcium, respectively. A PKC inhibitor (1 microM CGP 41 251) abolished PMA-induced secretion, but did not alter calcium-induced secretion. This indicates that calcium-induced secretion is independent of PKC activation. Chief cell proteins were labeled with 32P-orthophosphate and phosphorylation of pp72 was detected by autoradiography of 2-dimensional polyacrylamide gels. In the presence of basal calcium, PMA (100 nM) caused a > two-fold increase in phosphorylation of pp72. Without PMA, calcium did not alter phosphorylation of pp72. However, 1 microM calcium caused an approx. 50% attenuation of PMA-induced phosphorylation of pp72. Experiments with a MARCKS "phosphorylation/calmodulin binding domain peptide" indicated that calcium/calmodulin inhibits phosphorylation of pp72 by binding to the phosphorylation/calmodulin binding domain and not by inhibiting PKC activity. These observations support the hypothesis that, in gastric chief cells, interplay between calcium/calmodulin binding and phosphorylation of a common domain on the 72-kDa MARCKS-like protein plays a role in modulating pepsinogen secretion.  相似文献   

14.
The phosphorylation state of cytoskeletal proteins, including certain microtubule-associated proteins, may influence the development and plasticity of axons and dendrites in mammalian neuron in response to appropriate extracellular stimuli. In particular, high molecular weight microtubule-associated protein 2, has been implicated in dendrite growth and synaptic plasticity and is thought to be modulated by phosphorylation and dephosphorylation. We have previously determined that threonines 1620/1623 on the microtubule-associated protein 2 molecule become phosphorylated in vivo and are targets for proline-directed protein kinases in vitro. Using the phosphorylated site-specific antibody 305, we now report the decreased phosphorylation state of high molecular weight microtubule-associated protein 2 during the development of cultured cerebellar granule neurons. Phosphorylation of high molecular weight microtubule-associated protein 2 at this site is significantly inhibited by lithium in short-term cultured neurons, which suggests the implication of glycogen synthase kinase-3. In long-term cultured neurons, it is also partially inhibited by PD098059, an inhibitor of extracellular signal-regulated protein kinase activation, which indicates an additional contribution of this kinase to high molecular weight microtubule-associated protein 2 phosphorylation at this stage. Both in short-term and long-term cultured neurons, okadaic acid augments high molecular weight microtubule-associated protein 2 phosphorylation at this site through the inhibition of protein phosphatases 1 and/or 2A. Finally, glutamate receptor activation leads to a dephosphorylation of high molecular weight microtubule-associated protein 2 at this site which can also be effectively prevented by okadaic acid. These results are consistent with the participation of glycogen synthase kinase-3, extracellular signal-regulated protein kinases and protein phosphatases 1 and 2A, in the regulation of microtubule-associated protein 2 phosphorylation within living neurons, which may be modulated by extracellular signals like the neurotransmitter glutamate.  相似文献   

15.
Both the Ca2+/phospholipid-dependent protein kinases (protein kinases C, PKCs) and mitogen-activated protein kinases (MAPKs) have been implicated as participants in the secretory response of bovine adrenomedullary chromaffin cells. To investigate a possible role for these kinases in exocytosis and the relationship of these kinases to one another, intact chromaffin cells were treated with agents that inhibited each of the kinases and analyzed for catecholamine release and MAPK/extracellular signal-regulated kinase (ERK) kinase (MEK)/MAPK activation after stimulation with secretagogues of differential efficacy. Of the three secretagogues tested, inactivation of PKCs by long-term phorbol 12-myristate 13-acetate (PMA) treatment or incubation with GF109203X had the greatest inhibitory effect on nicotine-induced catecholamine release and MEK/MAPK activation, a moderate effect on KCl-induced events, and little, if any, effect on Ca2+ ionophore-elicited exocytosis and MEK/MAPK activation. These results indicate that PKC plays a significant role in events induced by the optimal secretagogue nicotine and a lesser role in exocytosis elicited by the suboptimal secretagogues KCl and Ca2+ ionophore. Treatment of cells with the MEK-activation inhibitor PD098059 completely inhibited MEK/MAPK activation (IC50 1-5 microM) and partially inhibited catecholamine release induced by all secretagogues. However, PD098059 was more effective at inhibiting exocytosis induced by suboptimal secretagogues (IC50 approximately 10 microM) than that induced by nicotine (IC50 approximately 30 microM). These results suggest a more prominent role for MEK/MAPK in basic secretory events activated by suboptimal secretagogues than in those activated by the optimal secretagogue nicotine. However, PD098059 also partially blocked secretion potentiated by short-term PMA treatment, suggesting that PKC can function in part by signaling through MEK/MAPK to enhance secretion. Taken together, these results provide evidence for the preferential involvement of MEK/MAPK in basic secretory events activated by the suboptimal secretagogues KCl and Ca2+ ionophore and the participation of both PKC and MEK/MAPK in optimal, secretion induced by nicotine.  相似文献   

16.
Activation of the Ras/Raf/mitogen-activated protein kinase kinase/mitogen-activated protein (MAP) kinase signaling cascade is initiated by activation of growth factor receptors and regulates many cellular events, including cell cycle control. Our previous studies suggested that the connexin-43 gap junction protein may be a target of activated MAP kinase and that MAP kinase may regulate connexin-43 function. We identified the sites of MAP kinase phosphorylation in in vitro studies as the consensus MAP kinase recognition sites in the cytoplasmic carboxyl tail of connexin-43, Ser255, Ser279, and Ser282. In this study, we demonstrate that activation of MAP kinase by ligand-induced activation of the epidermal growth factor (EGF) or lysophosphatidic acid receptors or by pervanadate-induced inhibition of tyrosine phosphatases results in increased phosphorylation on connexin-43. EGF and lysophosphatidic acid-induced phosphorylation on connexin-43 and the down-regulation of gap junctional communication in EGF-treated cells were blocked by a specific mitogen-activated protein kinase kinase inhibitor (PD98059) that prevented activation of MAP kinase. These studies confirm that connexin-43 is a MAP kinase substrate in vivo and that phosphorylation on Ser255, Ser279, and/or Ser282 initiates the down-regulation of gap junctional communication. Studies with connexin-43 mutants suggest that MAP kinase phosphorylation at one or more of the tandem Ser279/Ser282 sites is sufficient to disrupt gap junctional intercellular communication.  相似文献   

17.
We demonstrated previously that the activation of v-Abl protein tyrosine kinase (PTK) in IC.DP murine pre-mast cells resulted in suppression of apoptosis after withdrawal of interleukin 3 (IL-3), that protein kinase C (PKC) translocated to the nucleus 6 h after v-Abl PTK activation and that inhibition of PKC restored apoptosis after IL-3 deprivation in the presence of v-Abl PTK activity. Here we demonstrate that v-Abl PTK activation is followed by an approximately twofold increase in mRNA level of Bcl-XL by 6 h and a corresponding increase in Bcl-XL protein level by 24 h. Bcl-xL RNA and protein decreased in IL-3 deprived cells in the absence of v-Abl PTK activity. Exposure of cells with v-Abl PTK active to the PKC inhbitor calphostin C (125 ng/ml) prevented the increase in Bcl-xL protein and resulted in apoptosis. No changes in Bax or Bcl-2 protein level were noted after IL-3 withdrawal and/or activation of v-Abl PTK. Bak was barely detectable and Bad protein level decreased in cells undergoing apoptosis. The data suggest that suppression of apoptosis by v-Abl PTK in the absence of IL-3 is associated with PKC signalling and the upregulation of Bcl-xL in IC.DP cells.  相似文献   

18.
The possible modulation of nitric oxide (NO) synthase (NOS) activity by protein kinase C (PKC) was investigated in primary cultures of rat cerebellar neurons. Incubation of the cells with L-arginine and nicotinamide-adenine dinucleotide phosphate (NADPH) produced detectable levels of NO, as quantified by photometric assay [0.14 +/- 0.03 nmol/h/dish (2.5 x 10(6) cells)]. The NO producing activity was paralleled by concomitant accumulation of cyclic GMP (cGMP) (0.12 +/- 0.02 pmol/dish). Downregulation of PKC by prolonged treatment with phorbol esters or inhibition of the kinase by treatment with 4taurosporine raised the basal levels of NO and cGMP five fold. When granule cells were incubated in the absence of extracellular Mg2+, N-methyl-D-aspartate and to a lesser extent, glutamate became effective in enhancing NO formation and cGMP accumulation with respect to the control. The NO and cGMP increases induced by the two agonists were almost doubled by treatment of the cells with staurosporine or depletion of PKC. Calphostin C. an inhibitor of the regulatory domain of PKC, was as effective as staurosporine in increasing the formation of NO in both resting and excited cells. These results indicate that downregulation or inhibition of PKC increase NOS activity in cerebellar neurons, and suggest that phosphorylation of NOS by PKC negatively modulates the catalytic activity of the enzyme in these cells.  相似文献   

19.
The aim of this study was to study the possible intracellular mechanisms underlying the anoxia-induced long-term potentiation (anoxic LTP) in the CA1 neurons of rat hippocampal slices using extra- and intracellular recording techniques. Superfusion of the hippocampal slices with the protein kinase C (PKC) inhibitors NPC-15437 (20 microM) or H-7 (20 microM) specifically prevented the induction of anoxic LTP. Moreover, the anoxic LTP was completely abolished in neurons intracellularly recorded with the selective PKC inhibitor PKCI 19-36 (50 microM). The specific cAMP-dependent protein kinase (PKA) inhibitor Rp-cyclic adenosine 3',5'-monophosphate (Rp-cAMPS, 25 microM) had no effect on the anoxic LTP. It is concluded that induction of anoxic LTP requires the activation of postsynaptic PKC.  相似文献   

20.
The aim of the present study was to investigate the implication of protein kinase C (PKC) in the mouse egg activation process. We used OAG (1-oleoyl-2-acetyl-sn-glycerol) as a PKC activator, calphostin C as a specific PKC inhibitor, and the calcium ionophore A23187 as a standard parthenogenetic agent. The exposure of zona-free eggs to 150 microM or 50 microM OAG for 10 min resulted in meiosis II completion in approximately 80% of instances. By contrast, at a lower concentration (25 microM), the PKC stimulator was ineffective as parthenogenetic agent. Shortly after the application of 150 microM OAG, the cytosolic Ca2+ concentration ([Ca2+]i) increased transiently in all the eggs examined, whereas after the addition of 50 microM OAG, [Ca2+]i remained unchanged for at least 20 min. During this period, the activity of M-phase promoting factor (MPF) dramatically decreased and most of the eggs entered anaphase except when the PKC was inhibited by calphostin C. Similarly, MPF inactivation and meiosis resumption were prevented in calphostin C-loaded eggs following treatment with A23187, even though the ionophore-induced Ca2+ signalling was not affected. Taken together, our results indicate that stimulation of PKC is a sufficient and necessary event to induce meiosis resumption in mouse eggs and strongly suggest that, in this species, the mechanism by which a transient calcium burst triggers MPF inactivation involves a PKC-dependent pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号