首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mn effect and characterization on γ-Al2O3-, -Al2O3- and SiO2-supported Ru catalysts were investigated for Fischer–Tropsch synthesis under pressurized conditions. In the slurry phase Fischer–Tropsch reaction, γ-Al2O3 catalysts showed higher performance on CO conversion and C5+ selectivity than -Al2O3 and SiO2 catalysts. Moreover, Ru/Mn/γ-Al2O3 exhibited high resistance to catalyst deactivation and other catalysts were deactivated during the reaction. From characterization results on XRD, TPR, TEM, XPS and pore distribution, Ru particles were clearly observed over the catalysts, and γ-Al2O3 catalysts showed a moderate pore and particle size such as 8 nm, where -Al2O3 and SiO2 showed highly dispersed ruthenium particles. The addition of Mn to γ-Al2O3 enhanced the removal of chloride from RuCl3, which can lead to the formation of metallic Ru with moderate particle size, which would be an active site for Fischer–Tropsch reaction. Concomitantly, manganese chloride is formed. These schemes can be assigned to the stable nature of Ru/Mn/γ-Al2O3 catalyst.  相似文献   

2.
In this work, we explored the potential of mesoporous zeolite-supported Co–Mo catalyst for hydrodesulfurization of petroleum resids, atmospheric and vacuum resids at 350–450°C under 6.9 MPa of H2 pressure. A mesoporous molecular sieve of MCM-41 type was synthesized; which has SiO2/Al2O3 ratio of about 41. MCM-41 supported Co–Mo catalyst was prepared by co-impregnation of Co(NO3)2·6H2O and (NH4)6Mo7O24 followed by calcination and sulfidation. Commercial Al2O3 supported Co–Mo (criterion 344TL) and dispersed ammonium tetrathiomolybdate (ATTM) were also tested for comparison purposes. The results indicated that Co–Mo/MCM-41(H) is active for HDS, but is not as good as commercial Co–Mo/Al2O3 for desulfurization of petroleum resids. It appears that the pore size of the synthesized MCM-41 (28 Å) is not large enough to convert large-sized molecules such as asphaltene present in the petroleum resids. Removing asphaltene from the resid prior to HDS has been found to improve the catalytic activity of Co–Mo/MCM-41(H). The use of ATTM is not as effective as that of Co–Mo catalysts, but is better for conversions of >540°C fraction as compared to noncatalytic runs at 400–450°C.  相似文献   

3.
Dispersing La2O3 on δ- or γ-Al2O3 significantly enhances the rate of NO reduction by CH4 in 1% O2, compared to unsupported La2O3. Typically, no bend-over in activity occurs between 500° and 700°C, and the rate at 700°C is 60% higher than that with a Co/ZSM-5 catalyst. The final activity was dependent upon the La2O3 precursor used, the pretreatment, and the La2O3 loading. The most active family of catalysts consisted of La2O3 on γ-Al2O3 prepared with lanthanum acetate and calcined at 750°C for 10 h. A maximum in rate (mol/s/g) and specific activity (mol/s/m2) occurred between the addition of one and two theoretical monolayers of La2O3 on the γ-Al2O3 surface. The best catalyst, 40% La2O3/γ-Al2O3, had a turnover frequency at 700°C of 0.05 s−1, based on NO chemisorption at 25°C, which was 15 times higher than that for Co/ZSM-5. These La2O3/Al2O3 catalysts exhibited stable activity under high conversion conditions as well as high CH4 selectivity (CH4 + NO vs. CH4 + O2). The addition of Sr to a 20% La2O3/γ-Al2O3 sample increased activity, and a maximum rate enhancement of 45% was obtained at a SrO loading of 5%. In contrast, addition of SO=4 to the latter Sr-promoted La2O3/Al2O3 catalyst decreased activity although sulfate increased the activity of Sr-promoted La2O3. Dispersing La2O3 on SiO2 produced catalysts with extremely low specific activities, and rates were even lower than with pure La2O3. This is presumably due to water sensitivity and silicate formation. The La2O3/Al2O3 catalysts are anticipated to show sufficient hydrothermal stability to allow their use in certain high-temperature applications.  相似文献   

4.
In situ time-resolved FTIR spectroscopy was used to study the reaction mechanism of partial oxidation of methane to synthesis gas and the interaction of CH4/O2/He (2/1/45) gas mixture with adsorbed CO species over SiO2 and γ-Al2O3 supported Rh and Ru catalysts at 500–600°C. It was found that CO is the primary product for the reaction of CH4/O2/He (2/1/45) gas mixture over H2 reduced and working state Rh/SiO2 catalyst. Direct oxidation of methane is the main pathway of synthesis gas formation over Rh/SiO2 catalyst. CO2 is the primary product for the reaction of CH4/O2/He (2/1/45) gas mixture over Ru/γ-Al2O3 and Ru/SiO2 catalysts. The dominant reaction pathway of CO formation over Ru/γ-Al2O3 and Ru/SiO2 catalysts is via the reforming reactions of CH4 with CO2 and H2O. The effect of space velocity on the partial oxidation of methane over SiO2 and γ-Al2O3 supported Rh and Ru catalysts is consistent with the above mechanisms. It is also found that consecutive oxidation of surface CO species is an important pathway of CO2 formation during the partial oxidation of methane to synthesis gas over Rh/SiO2 and Ru/γ-Al2O3 catalysts.  相似文献   

5.
Zirconium sulfate supported on γ-Al2O3 catalysts were prepared by impregnation of powdered γ-Al2O3 with zirconium sulfate aqueous solution followed by calcining in air at high temperature. For Zr(SO4)2/γ-Al2O3 samples, no diffraction line of zirconium sulfate was observed up to 50 wt.%, indicating good dispersion of Zr(SO4)2 on the surface of γ-Al2O3. The acidity of catalysts increased in proportion to the zirconium sulfate content up to 40 wt.% of Zr(SO4)2. 40-Zr(SO4)2/γ-Al2O3 calcined at 400 °C exhibited maximum catalytic activities for 2-propanol dehydration and cumene dealkylation. The catalytic activities for both reactions, 2-propanol dehydration and cumene dealkylation were correlated with the acidity of catalysts measured by ammonia chemisorption method.  相似文献   

6.
Monolithic structures made of cordierite, γ-Al2O3 and steel have been prepared as catalysts and tested for Fischer–Tropsch activity. The monoliths made of cordierite and steel were washcoated with a 20 wt.% Co–1 wt.% Re/γ-Al2O3 Fischer–Tropsch catalyst whereas the γ-Al2O3 monoliths were made by direct impregnation with an aqueous solution of the Co and Re salts resulting in a loading of 12 wt.% Co and 0.5 wt.% Re. The activity and selectivity of the different monoliths were compared with the corresponding powder catalysts.

Higher washcoat loadings resulted in decreased C5+ selectivity and olefin/paraffin ratios due to increased transport limitations. The impregnated γ-Al2O3 monoliths also showed similar C5+ selectivities as powder catalysts of small particle size (38–53 μm). Lower activities were observed with the steel monoliths probably due to experimental problems.  相似文献   


7.
Monodispersed nano-Au/γ-Al2O3 catalysts for low-temperature oxidation of CO have been prepared via a modified colloidal deposition route, which involves the deposition of dodecanethiolate self-assembled monolayer (SAM)-protected gold nanoparticles (C12 nano-Au) in hexane on γ-Al2O3 at room temperature. The diameter of the gold nanoparticles deposited on the support is 2.5 ± 0.8 nm after thermal treatment, and their valence states comprise both the metallic and oxidized states. It is found that the thermal treatment temperature affects significantly the catalytic activity of the catalysts in the processing steps. The catalyst treated at 190 °C exhibits considerably higher activity as compared to catalysts treated at 165 and 250 °C. A 2.0-wt.% nano-Au/γ-Al2O3 catalyst treated at 190 °C for 15 h maintains the catalytic activity at nearly 100% CO oxidation for at least 800 h at 15 °C, at least 600 h at 0 °C, and even longer than 450 h at −5 °C. Evidently, the catalysts obtained using this preparation route show high catalytic activity, particularly at low temperatures, and a good long-term stability.  相似文献   

8.
The effect of the nature and distribution of VOx species over amorphous and well-ordered (MCM-41) SiO2 as well as over γ-Al2O3 on their performance in the oxidative dehydrogenation of propane with O2 and N2O was studied using in situ UV–vis, ex situ XRD and H2-TPR analysis in combination with steady-state catalytic tests. As compared to the alumina support, differently structured SiO2 supports stabilise highly dispersed surface VOx species at higher vanadium loading. These species are more selective over the latter materials than over V/γ-Al2O3 catalysts. This finding was explained by the difference in acidic properties of silica- and alumina-based supports. C3H6 selectivity over V/γ-Al2O3 materials is improved by covering the support fully with well-dispersed VOx species. Additionally, C3H6 selectivity over all materials studied can be tuned by using an alternative oxidising agent (N2O). The improving effect of N2O on C3H6 selectivity is related to the lower ability of N2O for catalyst reoxidation resulting in an increase in the degree of catalyst reduction, i.e. spatial separation of active lattice oxygen in surface VOx species. Such separation favours selective oxidation over COx formation.  相似文献   

9.
O. Demoulin  M. Navez  P. Ruiz 《Catalysis Today》2006,112(1-4):153-156
Operando DRIFTS was applied to the study of the evolution of surface species formed on a Pd (2 wt.%)/γ-Al2O3 catalyst in various conditions. No differences were observed as a function of the initial oxidation state of palladium. Formates/carbonates species were identified at low temperature (<400 °C) and disappeared when CO2 production started. These species come from the Pd-catalyzed interaction of CO with the alumina support, while CO2 induces hydrogenocarbonates formation at low temperature (<300 °C). Their presence does not explain the inhibiting effect of CO2 observed in CCM on Pd/γ-Al2O3 catalysts.  相似文献   

10.
Catalytic combustion of methane over Pd and Pt/SiO2/-Al2O3 membranes was studied in the temperature range 300–650 °C. Fuel and oxygen were fed at opposite membrane sides. In order to improve reactor controllability the -Al2O3 membranes were impregnated with SiO2 sol resulting to smaller pore size. Methane conversions up to 100% for the palladium membrane and up to 42% for the platinum membrane were achieved. The results indicated a transition from kinetic to mass transfer control within the temperature range investigated. This was accompanied by reduction of methane slip from tube to shell side with increasing temperature. CO and H2 were detected in the product gases of the palladium membrane. Their concentration could be reduced by applying a trans-membrane pressure difference. Low concentrations of CO were observed for the Pt/SiO2/-Al2O3 membrane, while no CO or H2 were detected for a Pd/-Al2O3 membrane operating in dead-end configuration.  相似文献   

11.
A series of phosphorus promoted γ-Al2O3 supported NiMo carbide catalysts with 0–4.5 wt.% P, 13 wt.% Mo and 2.5 wt.% Ni were synthesized and characterized by elemental analysis, pulsed CO chemisorption, BET surface area measurement, X-ray diffraction, near-edge X-ray absorption fine structure, DRIFT spectroscopy of CO adsorption and H2 temperature programmed reduction. X-ray diffraction patterns and CO uptake showed the P addition to NiMo/γ-Al2O3 carbide, increased the dispersion of β-Mo2C particles. DRIFT spectra of adsorbed CO revealed that P addition to NiMo/γ-Al2O3 carbide catalyst not only increases the dispersion of Ni-Mo carbide phase, but also changes the nature of surface active sites. The hydrodenitrogenation (HDN) and hydrodesulfurization (HDS) activities of these P promoted NiMo/γ-Al2O3 carbide catalysts were performed in trickle bed reactor using light gas oil (LGO) derived from Athabasca bitumen and model feed containing quinoline and dibenzothiophene at industrial conditions. The P added NiMo/γ-Al2O3 carbide catalysts showed enhanced HDN activity compared to the NiMo/γ-Al2O3 catalysts with both the feed stocks. The P had almost no influence on the HDS activity of NiMo/γ-Al2O3 carbide with LGO and dibenzothiophene. P addition to NiMo/γ-Al2O3 carbide accelerated CN bond breaking and thus increased the HDN activity.  相似文献   

12.
The effectiveness of Ag/Al2O3 catalyst depends greatly on the alumina source used for preparation. A series of alumina-supported catalysts derived from AlOOH, Al2O3, and Al(OH)3 was studied by means of X-ray diffraction (XRD), scanning electron microscopy (SEM), ultraviolet–visible (UV–vis) spectroscopy, diffuse reflectance infrared Fourier transform (DRIFT) spectroscopy, O2, NO + O2-temperature programmed desorption (TPD), H2-temperature programmed reduction (TPR), thermal gravimetric analysis (TGA) and activity test, with a focus on the correlation between their redox properties and catalytic behavior towards C3H6-selective catalytic reduction (SCR) of NO reaction. The best SCR activity along with a moderated C3H6 conversion was achieved over Ag/Al2O3 (I) employing AlOOH source. The high density of Ag–O–Al species in Ag/Al2O3 (I) is deemed to be crucial for NO selective reduction into N2. By contrast, a high C3H6 conversion simultaneously with a moderate N2 yield was observed over Ag/Al2O3 (II) prepared from a γ-Al2O3 source. The larger particles of AgmO (m > 2) crystallites were believed to facilitate the propene oxidation therefore leading to a scarcity of reductant for SCR of NO. An amorphous Ag/Al2O3 (III) was obtained via employing a Al(OH)3 source and 500 °C calcination exhibiting a poor SCR performance similar to that for Ag-free Al2O3 (I). A subsequent calcination of Ag/Al2O3 (III) at 800 °C led to the generation of Ag/Al2O3 (IV) catalyst yielding a significant enhancement in both N2 yield and C3H6 conversion, which was attributed to the appearance of γ-phase structure and an increase in surface area. Further thermo treatment at 950 °C for the preparation of Ag/Al2O3 (V) accelerated the sintering of Ag clusters resulting in a severe unselective combustion, which competes with SCR of NO reaction. In view of the transient studies, the redox properties of the prepared catalysts were investigated showing an oxidation capability of Ag/Al2O3 (II and V) > Ag/Al2O3 (IV) > Ag/Al2O3 (I) > Ag/Al2O3 (III) and Al2O3 (I). The formation of nitrate species is an important step for the deNOx process, which can be promoted by increasing O2 feed concentration as evidenced by NO + O2-TPD study for Ag/Al2O3 (I), achieving a better catalytic performance.  相似文献   

13.
The photocatalytic properties of sulphated MoOx/γ-Al2O3 catalysts in cyclohexane oxidative dehydrogenation have been determined in a two-dimensional fluidized bed photoreactor and compared to those of sulphated MoOx/TiO2 catalysts. Photocatalytic tests on MoOx/γ-Al2O3 at 8 wt% MoO3 and various sulphate contents showed the selective (100%) formation of cyclohexene, without production of benzene, as instead found with MoOx/TiO2. These results show that the selectivity of photocatalytic cyclohexane oxydehydrogenation is dramatically influenced by the catalyst support.

Maximum cyclohexane conversion and cyclohexene yield of 11% were obtained for SO4 content of 2.6 wt% at 120 °C. Physico-chemical characterisation of catalysts indicates the presence of both octahedral polymolybdate and sulphate species on alumina surface, as previously found for titania. Increasing sulphate load, thermogravimetry evidenced the presence of up to three sulphate species at different thermal stability. The lower activity observed at high sulphate content is likely due to polymolybdate decoration by sulphates.  相似文献   


14.
Catalytic selective reduction of NO to N2 was studied comparing a series of Cu-based catalysts (ca. 8 wt.%) supported over amorphous pure and modified silicas: SiO2, SiO2-Al2O3, SiO2-TiO2, SiO2-ZrO2. The catalysts were prepared by the chemisorption-hydrolysis method which ensured the formation of a unique copper phase well dispersed over all supports, as confirmed by scanning electron micrographs (SEMs). Temperature-programmed reduction (TPR) analyses confirmed the presence of dispersed copper species which underwent complete reduction at a temperature of about 220°C, independently of the support. It was found that the support affects the extent of NO reduction as well as the selectivity to N2 formation. Maximum N2 yield was found in the range 275–300°C. The catalyst prepared over SiO2-Al2O3 was the most active and selective with respect to the other silicas. Competitiveness factors (c.f.’s) as high as 13–20% in the temperature range 200–250°C could be calculated. For all catalysts, the temperature of the N2 peak maximum did not correspond to that of the maximum C2H4 oxidation to CO2, suggesting the presence of two different sites for the oxidation and the reduction activity. On the catalyst prepared on SiO2-Al2O3, a kinetic interpretation of catalytic data collected at different contact times and temperatures permitted evaluating the ratio between kinetic coefficients as well as the difference between activation energies of NO reduction by C2H4 and C2H4 oxidation by O2.  相似文献   

15.
Polychlorinated benzenes (PhClx) are formed as byproducts in the combustion of chlorobenzene on Pt supported on γ-Al2O3, SiO2, SiO2–Al2O3, or ZrO2. The congener and isomer distribution of the PhClx differs for the various supports. The amounts of PhClx correlate with the dispersion of platinum. Thus, a Pt/γ-Al2O3 catalyst calcined at 500°C to yield very small Pt crystallites was more active in PhClx formation than Pt/γ-Al2O3 calcined at 800°C. In all cases T50% for chlorobenzene conversion is close to 300°C and appears to be independent of the crystallite size of the platinum. Replacing platinum by palladium led to lower rates of combustion and to more byproducts. These results lead us to propose that, in the presence of Cl and higher oxygen concentrations, small Pt crystallites are converted more easily into Pt(IV) species. These are less efficient in combustion, but can be more active in chlorination.  相似文献   

16.
Two types of NiO/γ-Al2O3 catalysts prepared by the impregnation and the sol–gel method were used for the partial oxidation of methane to syngas at 850°C (GHSV1.8×105 lkg−1 h−1). The effects of the carbon deposition, the loss and sintering of nickel and the phase transformation of γ-Al2O3 support on the catalytic performance during 80 h POM reaction were investigated with a series of characterization such as XRD, BET, AAS, TG, and XPS. The results indicated that the carbon deposition and the loss and sintering of nickel could not cause the serious decrease of catalytic performance over NiO/γ-Al2O3 catalyst during the short-time reaction. However, the slow process of the support γ-Al2O3 phase transforming into -Al2O3 could slowly decrease the performance of NiO/γ-Al2O3 catalysts. Aimed at the reasons of the deactivation, an improved catalyst was obtained by the complexing agent-assisted sol–gel method.  相似文献   

17.
Size-controlled Pd nanoparticles (PdNPs) were synthesized in aqueous solution, using sodium car-boxymethyl cellulose as the stabilizer. Size-controlled PdNPs were supported onα-Al2O3 by the incipient wetness impregnation method. The PdNPs onα-Al2O3 support were in a narrow particle size distribution in the range of 1-6 nm. A series of PdNPs/α-Al2O3 catalysts were used for the selective hydrogenation of acetylene in ethylene-rich stream. The results show that PdNPs/α-Al2O3 catalyst with 0.03%(by mass) Pd loading is a very effective and sta-ble catalyst. With promoter Ag added, ethylene selectivity is increased from 41.0%to 63.8%at 100 &#176;C. Comparing with conventional Pd-Ag/α-Al2O3 catalyst, PdNPs-Ag/α-Al2O3 catalyst has better catalytic performance in acety-lene hydrogenation and shows good prospects for industrial application.  相似文献   

18.
Ti-containing mesoporous catalysts were prepared by chemical vapor deposition (CVD) of TiCl4 on silica MCM-41 in the 700–900 °C temperature range. These samples were characterized (with XRD, ICP, nitrogen adsorption, FT-IR, ESCA, and TEM) and evaluated for the epoxidation of propylene with two alkyl hydroperoxides. The increase of CVD temperature resulted in the decrease of titanium content, catalyst hydroxyl population, crystallinity, and surface area. Catalyst selectivity to the desired product – propylene oxide – was highly sensitive to the deposition temperature. The best Ti/MCM-41 catalyst was prepared at the temperature of 800 °C, which had the maximum propylene oxide yield of 94.3%.  相似文献   

19.
Rhodium catalysts, supported on six γ-Al2O3 supports with different crystallinities, were exposed to sequential treatments in hydrogen at 500°C, in oxygen at 760°C, in hydrogen at 500°C and at 760°C, respectively. Samples were characterized by X-ray diffraction and hydrogen chemisorption at various stages in the sequential treatment. Based on the characterization results, it is concluded that the formation of crystalline Rh2O3 is a function of γ-Al2O3 crystallinity; formation of crystalline Rh2O3 increased with increasing crystallinity of γ-Al2O3 during treatment in oxygen at 760°C. The crystalline Rh2O3 formed during treatment in oxygen at 760°C was reduced to Rh metal by hydrogen at 500°C, but most of the Rh did not adsorb hydrogen at room temperature. Subsequent treatment in hydrogen at 760°C increased the hydrogen adsorption capacity by as much as a factor of three. X-ray line broadening measurements showed that oxygen treatment of reduced Rh/γ-Al2O3 at 760°C followed by hydrogen reduction at 500°C resulted in significant increases in Rh crystal size; further treatment in hydrogen at 760°C resulted in additional sintering of Rh.  相似文献   

20.
Ag-modified La0.6Sr0.4MnO3-based catalysts with the perovskite-type structure were prepared by using a citric acid sol–gel method, and their catalytic performance for complete oxidation of methanol and ethanol was evaluated and compared with that of the γ-Al2O3-supported catalysts, Ag/γ-Al2O3, Pt/γ-Al2O3, and Pd/γ-Al2O3. The results showed that the Ag-modified La0.6Sr0.4MnO3-based catalysts with the perovskite-type structure displayed the activity significantly higher than that of the supported precious metal catalysts, 0.1%Pd/γ-Al2O3 and 0.1%Pt/γ-Al2O3 in the temperature range of 370–573 K. Over a 6%Ag/20%La0.6Sr0.4MnO3/γ-Al2O3 catalyst, the T95 temperature for methanol oxidation can be as low as 413 K. Even at such low reaction temperature, there were little HCHO and CO detected in the reaction exit-gas. However, for the 0.1%Pd/γ-Al2O3 and 0.1%Pt/γ-Al2O3 catalysts, the HCHO content in the reaction exit-gas reached 200 and 630 ppm at their T95 temperatures. Over a 6%Ag/La0.6Sr0.4MnO3 catalyst, the T95 temperature for ethanol oxidation can be as low as 453 K, with a corresponding content of CH3CHO in the exit-gas at 782 ppm; when ethanol oxidation is performed at 493 K, the content of acetaldehyde in the exit-gas can be below 1 ppm. Characterization of the catalysts by X-ray diffraction (XRD), TEM, XPS, laser Raman spectra (LRS), hydrogen temperature-programmed reduction (H2-TPR) and oxygen temperature-programmed desorption (O2-TPD) methods revealed that both the surface and the bulk phase of the perovskite La0.6Sr0.4MnO3 played important roles in the catalytic oxidation of the alcohols, and that γ-Al2O3 as the bottom carrier could be beneficial in creating a large surface area of catalyst. Moreover, a small amount of Ag+ doped onto the surface of La0.6Sr0.4MnO3 was able to partially occupy the positions of La3+ and Sr2+ due to their similar ionic radii, and thus, became stabilized by the perovskite lattice, which would be in favor of preventing the aggregation of the Ag species on the surface and enhancing the stability of the catalyst. On the other hand, modification of the Ag+ to the surface of La0.6Sr0.4MnO3 resulted in an increase in relative content of the surface O22−/O species highly reactive toward the alcohols and aldehydes as well as CO. Besides, solution of low-valence metal oxides SrO and Ag2O with proper amounts in the lattice of the trivalent metal perovskite-type oxide LaMnO3 would also lead to an increase in the content of the reducible Mnn+ and the formation of anionic vacancies, which would be favorable for the adsorption-activation of oxygen on the functioning catalyst and the transport of the lattice and surface oxygen species. All these factors would contribute to the pronounced improvement of the catalyst performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号