首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
A flexible, transparent, chemical gas sensor is assembled from a transparent conducting film of carbon nanotube (CNT) networks that are coated with hierarchically nanostructured polyaniline (PANI) nanorods. The nanocomposite film is synthesized by in‐situ, chemical oxidative polymerization of aniline in a functional multiwalled CNT (FMWCNT) suspension and is simultaneously deposited onto a flexible polyethylene terephthalate (PET) substrate. An as‐prepared flexible transparent chemical gas sensor exhibits excellent transparency of 85.0% at 550 nm using the PANI/FMWCNT nanocomposite film prepared over a reaction time of 8 h. The sensor also shows good flexibility, without any obvious decrease in performance after 500 bending/extending cycles, demonstrating high‐performance, portable gas sensing at room temperature. This superior performance could be attributed to the improved electron transport and collection due to the CNTs, resulting in reliable and efficient sensing, as well as the high surface‐to‐volume ratio of the hierarchically nanostructured composites. The excellent transparency, improved sensing performance, and superior flexibility of the device, may enable the integration of this simple, low‐cost, gas sensor into handheld flexible transparent electronic circuitry and optoelectronic devices.  相似文献   

2.
3.
4.
The ingenious design of a freestanding flexible electrode brings the possibility for power sources in emerging wearable electronic devices. Here, reduced graphene oxide (rGO) wraps carbon nanotubes (CNTs) and rGO tightly surrounded by MnO2 nanosheets, forming a 3D multilevel porous conductive structure via vacuum freeze‐drying. The sandwich‐like architecture possesses multiple functions as a flexible anode for lithium‐ion batteries. Micrometer‐sized pores among the continuously waved rGO layers could extraordinarily improve ion diffusion. Nano‐sized pores among the MnO2 nanosheets and CNT/rGO@MnO2 particles could provide vast accessible active sites and alleviate volume change. The tight connection between MnO2 and carbon skeleton could facilitate electron transportation and enhance structural stability. Due to the special structure, the rGO‐wrapped CNT/rGO@MnO2 porous film as an anode shows a high capacity, excellent rate performance, and superior cycling stability (1344.2 mAh g−1 over 630 cycles at 2 A g−1, 608.5 mAh g−1 over 1000 cycles at 7.5 A g−1). Furthermore, the evolutions of microstructure and chemical valence occurring inside the electrode after cycling are investigated to illuminate the structural superiority for energy storage. The excellent electrochemical performance of this freestanding flexible electrode makes it an attractive candidate for practical application in flexible energy storage.  相似文献   

5.
Yarn supercapacitors are promising power sources for flexible electronic applications that require conventional fabric‐like durability and wearer comfort. Carbon nanotube (CNT) yarn is an attractive choice for constructing yarn supercapacitors used in wearable textiles because of its high strength and flexibility. However, low capacitance and energy density limits the use of pure CNT yarn in wearable high‐energy density devices. Here, transitional metal oxide pseudocapacitive materials NiO and Co3O4 are deposited on as‐spun CNT yarn surface using a simple electrodeposition process. The Co3O4 deposited on the CNT yarn surface forms a uniform hybridized CNT@Co3O4 layer. The two‐ply supercapacitors formed from the CNT@Co3O4 composite yarns display excellent electrochemical properties with very high capacitance of 52.6 mF cm?2 and energy density of 1.10 μWh cm?2. The high performance two‐ply CNT@Co3O4 yarn supercapacitors are mechanically and electrochemically robust to meet the high performance requirements of power sources for wearable electronics.  相似文献   

6.
7.
2D transition‐metal carbides and nitrides, named MXenes, are promising materials for energy storage, but suffer from aggregation and restacking of the 2D nanosheets, which limits their electrochemical performance. In order to overcome this problem and realize the full potential of MXene nanosheets, a 3D MXene foam with developed porous structure is established via a simple sulfur‐template method, which is freestanding, flexible, and highly conductive, and can be directly used as the electrode in lithium‐ion batteries. The 3D porous architecture of the MXene foam offers massive active sites to enhance the lithium storage capacity. Moreover, its foam structure facilitates electrolyte infiltration for fast Li+ transfer. As a result, this flexible 3D porous MXene foam exhibits significantly enhanced capacity of 455.5 mAh g?1 at 50 mA g?1, excellent rate performance (101 mAh g?1 at 18 A g?1), and superior ultralong‐term cycle stability (220 mAh g?1 at 1 A g?1 after 3500 cycles). This work not only demonstrates the great superiority of the 3D porous MXene foam but also proposes the sulfur‐template method for controllable constructing of the 3D foam from 2D nanosheets at a relatively low temperature.  相似文献   

8.
Carbon fiber (CF) grafted with a layer of carbon nanotubes (CNTs) plays an important role in composite materials and other fields; to date, the applications of CNTs@CF multiscale fibers are severely hindered by the limited amount of CNTs grafted on individual CFs and the weak interfacial binding force. Here, monolithic CNTs@CF fibers consisting of a 3D highly porous CNT sponge layer with macroscopic‐thickness (up to several millimeters), which is directly grown on a single CF, are fabricated. Mechanical tests reveal high sponge–CF interfacial strength owing to the presence of a thin transitional layer, which completely inhibits the CF slippage from the matrix upon fracture in CNTs@CF fiber–epoxy composites. The porous conductive CNTs@CF hybrid fibers also act as a template for introducing active materials (pseudopolymers and oxides), and a solid‐state fiber‐shaped supercapacitor and a fiber‐type lithium‐ion battery with high performances are demonstrated. These CNTs@CF fibers with macroscopic CNT layer thickness have many potential applications in areas such as hierarchically reinforced composites and flexible energy‐storage textiles.  相似文献   

9.
Single‐walled carbon nanotubes (SWNTs) are widely thought to be a strong contender for next‐generation printed electronic transistor materials. However, large‐scale solution‐based parallel assembly of SWNTs to obtain high‐performance transistor devices is challenging. SWNTs have anisotropic properties and, although partial alignment of the nanotubes has been theoretically predicted to achieve optimum transistor device performance, thus far no parallel solution‐based technique can achieve this. Herein a novel solution‐based technique, the immersion‐cum‐shake method, is reported to achieve partially aligned SWNT networks using semiconductive (99% enriched) SWNTs (s‐SWNTs). By immersing an aminosilane‐treated wafer into a solution of nanotubes placed on a rotary shaker, the repetitive flow of the nanotube solution over the wafer surface during the deposition process orients the nanotubes toward the fluid flow direction. By adjusting the nanotube concentration in the solution, the nanotube density of the partially aligned network can be controlled; linear densities ranging from 5 to 45 SWNTs/μm are observed. Through control of the linear SWNT density and channel length, the optimum SWNT‐based field‐effect transistor devices achieve outstanding performance metrics (with an on/off ratio of ~3.2 × 104 and mobility 46.5 cm2/Vs). Atomic force microscopy shows that the partial alignment is uniform over an area of 20 × 20 mm2 and confirms that the orientation of the nanotubes is mostly along the fluid flow direction, with a narrow orientation scatter characterized by a full width at half maximum (FWHM) of <15° for all but the densest film, which is 35°. This parallel process is large‐scale applicable and exploits the anisotropic properties of the SWNTs, presenting a viable path forward for industrial adoption of SWNTs in printed, flexible, and large‐area electronics.  相似文献   

10.
Single‐wall carbon nanotubes (SWCNTs), especially in the form of large‐area and high‐quality thin films, are a promising material for use in flexible and transparent electronics. Here, a continuous synthesis, deposition, and transfer technique is reported for the fabrication of meter‐scale SWCNT thin films, which have an excellent optoelectrical performance including a low sheet resistance of 65 Ω/? with a transmittance of 90% at a wavelength of 550 nm. Using these SWCNT thin films, high‐performance all‐CNT thin‐film transistors and integrated circuits are demonstrated, including 101‐stage ring oscillators. The results pave the way for the future development of large‐scale, flexible, and transparent electronics based on CNT thin films.  相似文献   

11.
The combination of novel materials with flexible electronic technology may yield new concepts of flexible electronic devices that effectively detect various biological chemicals to facilitate understanding of biological processes and conduct health monitoring. This paper demonstrates single‐ or multichannel implantable flexible sensors that are surface modified with conductive metal–organic frameworks (MOFs) such as copper‐MOF and cobalt‐MOF with large surface area, high porosity, and tunable catalysis capability. The sensors can monitor important nutriments such as ascorbicacid, glycine, l ‐tryptophan (l ‐Trp), and glucose with detection resolutions of 14.97, 0.71, 4.14, and 54.60 × 10?6 m , respectively. In addition, they offer sensing capability even under extreme deformation and complex surrounding environment with continuous monitoring capability for 20 d due to minimized use of biological active chemicals. Experiments using live cells and animals indicate that the MOF‐modified sensors are biologically safe to cells, and can detect l ‐Trp in blood and interstitial fluid. This work represents the first effort in integrating MOFs with flexible sensors to achieve highly specific and sensitive implantable electrochemical detection and may inspire appearance of more flexible electronic devices with enhanced capability in sensing, energy storage, and catalysis using various properties of MOFs.  相似文献   

12.
Flexible supercapacitors have shown enormous potential for portable electronic devices. Herein, hierarchical 3D all‐carbon electrode materials are prepared by assembling N‐doped graphene quantum dots (N‐GQDs) on carbonized MOF materials (cZIF‐8) interweaved with carbon nanotubes (CNTs) for flexible all‐solid‐state supercapacitors. In this ternary electrode, cZIF‐8 provides a large accessible surface area, CNTs act as the electrical conductive network, and N‐GQDs serve as highly pseudocapactive materials. Due to the synergistic effect and hierarchical assembly of these components, N‐GQD@cZIF‐8/CNT electrodes exhibit a high specific capacitance of 540 F g?1 at 0.5 A g?1 in a 1 m H2SO4 electrolyte and excellent cycle stability with 90.9% capacity retention over 8000 cycles. The assembled supercapacitor possesses an energy density of 18.75 Wh kg?1 with a power density of 108.7 W kg?1. Meanwhile, three supercapacitors connected in series can power light‐emitting diodes for 20 min. All‐solid‐state N‐GQD@cZIF‐8/CNT flexible supercapacitor exhibits an energy density of 14 Wh kg?1 with a power density of 89.3 W kg?1, while the capacitance retention after 5000 cycles reaches 82%. This work provides an effective way to construct novel electrode materials with high energy storage density as well as good cycling performance and power density for high‐performance energy storage devices via the rational design.  相似文献   

13.
14.
Ternary transition metal oxides (TMOs) are highly potential electrode materials for lithium ion batteries (LIBs) due to abundant defects and synergistic effects with various metal elements in a single structure. However, low electronic/ionic conductivity and severe volume change hamper their practical application for lithium storage. Herein, nanosheet‐assembled hollow single‐hole Ni–Co–Mn oxide (NHSNCM) spheres with oxygen vacancies can be obtained through a facile hydrothermal reaction, which makes both ends of each nanosheet exposed to sufficient free space for volume variation, electrolyte for extra active surface area, and dual ion diffusion paths compared with airtight hollow structures. Furthermore, oxygen vacancies could improve ion/electronic transport and ion insertion/extraction process of NHSNCM spheres. Thus, oxygen‐vacancy‐rich NHSNCM spheres embedded into a 3D porous carbon nanotube/graphene network as the anode film ensure efficient electrolyte infiltration into both the exterior and interior of porous and open spheres for a high utilization of the active material, showing an excellent electrochemical performance for LIBs (1595 mAh g?1 over 300 cycles at 2 A g?1, 441.6 mAh g?1 over 4000 cycles at 10 A g?1). Besides, this straightforward synthetic method opens an efficacious avenue for the construction of various nanosheet‐assembled hollow single‐hole TMO spheres for potential applications.  相似文献   

15.
16.
The design of advanced high‐energy‐density supercapacitors requires the design of unique materials that combine hierarchical nanoporous structures with high surface area to facilitate ion transport and excellent electrolyte permeability. Here, shape‐controlled 2D nanoporous carbon sheets (NPSs) with graphitic wall structure through the pyrolysis of metal–organic frameworks (MOFs) are developed. As a proof‐of‐concept application, the obtained NPSs are used as the electrode material for a supercapacitor. The carbon‐sheet‐based symmetric cell shows an ultrahigh Brunauer–Emmett–Teller (BET)‐area‐normalized capacitance of 21.4 µF cm?2 (233 F g?1), exceeding other carbon‐based supercapacitors. The addition of potassium iodide as redox‐active species in a sulfuric acid (supporting electrolyte) leads to the ground‐breaking enhancement in the energy density up to 90 Wh kg?1, which is higher than commercial aqueous rechargeable batteries, maintaining its superior power density. Thus, the new material provides a double profits strategy such as battery‐level energy and capacitor‐level power density.  相似文献   

17.
18.
3D graphene frameworks/Co3O4 composites are produced by the thermal explosion method, in which the generation of Co3O4 nanoparticles, reduction of graphene oxide, and creation of 3D frameworks are simultaneously completed. The process prevents the agglomeration of Co3O4 particles effectively, resulting in monodispersed Co3O4 nanoparticles scattered on the 3D graphene frameworks evenly. The prepared 3D graphene frameworks/Co3O4 composites used as electrodes for supercapacitor display a definite improvement on electrochemical performance with high specific capacitance (≈1765 F g?1 at a current density of 1 A g?1), good rate performance (≈1266 F g?1 at a current density of 20 A g?1), and excellent stability (≈93% maintenance of specific capacitance at a constant current density of 10 A g?1 after 5000 cycles). In addition, the composites are also employed as nonenzymatic sensors for the electrochemical detection of glucose, which exhibit high sensitivity (122.16 µA mM ?1 cm?2) and noteworthy lower detection limit (157 × 10?9 M , S/N = 3). Therefore, the authors expect that the 3D graphene frameworks/Co3O4 composites described here would possess potential applications as the electrode materials in supercapacitors and nonenzymatic detection of glucose.  相似文献   

19.
20.
With the rising development of flexible and wearable electronics, corresponding flexible energy storage devices with high energy density are required to provide a sustainable energy supply. Theoretically, rechargeable flexible Li–O2 batteries can provide high specific energy density; however, there are only a few reports on the construction of flexible Li–O2 batteries. Conventional flexible Li–O2 batteries possess a loose battery structure, which prevents flexibility and stability. The low mechanical strength of the gas diffusion layer and anode also lead to a flexible Li–O2 battery with poor mechanical properties. All these attributes limit their practical applications. Herein, the authors develop an integrated flexible Li–O2 battery based on a high‐fatigue‐resistance anode and a novel flexible stretchable gas diffusion layer. Owing to the synergistic effect of the stable electrocatalytic activity and hierarchical 3D interconnected network structure of the free‐standing cathode, the obtained flexible Li–O2 batteries exhibit superior electrochemical performance, including a high specific capacity, an excellent rate capability, and exceptional cycle stability. Furthermore, benefitting from the above advantages, the as‐fabricated flexible batteries can realize excellent mechanical and electrochemical stability. Even after a thousand cycles of the bending process, the flexible Li–O2 battery can still possess a stable open‐circuit voltage, a high specific capacity, and a durable cycle performance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号