首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Organic electrochemical transistors (OECTs) show great promise for flexible, low-cost, and low-voltage sensors for aqueous solutions. The majority of OECT devices are made using the polymer blend poly(ethylenedioxythiophene):poly(styrene sulfonate) (PEDOT:PSS), in which PEDOT is intrinsically doped due to inclusion of PSS. Because of this intrinsic doping, PEDOT:PSS OECTs generally operate in depletion mode, which results in a higher power consumption and limits stability. Here, a straightforward method to de-dope PEDOT:PSS using commercially available amine-based molecular de-dopants to achieve stable enhancement-mode OECTs is presented. The enhancement-mode OECTs show mobilities near that of pristine PEDOT:PSS (≈2 cm2 V−1 s−1) with stable operation over 1000 on/off cycles. The electron and proton exchange among PEDOT, PSS, and the molecular de-dopants are characterized to reveal the underlying chemical mechanism of the threshold voltage shift to negative voltages. Finally, the effect of the de-doping on the microstructure of the spin-cast PEDOT:PSS films is investigated.  相似文献   

2.
Organic electrochemical transistors (OECTs) are promising transducers for biointerfacing due to their high transconductance, biocompatibility, and availability in a variety of form factors. Most OECTs reported to date, however, utilize rather large channels, limiting the transistor performance and resulting in a low transistor density. This is typically a consequence of limitations associated with traditional fabrication methods and with 2D substrates. Here, the fabrication and characterization of OECTs with vertically stacked contacts, which overcome these limitations, is reported. The resulting vertical transistors exhibit a reduced footprint, increased intrinsic transconductance of up to 57 mS, and a geometry‐normalized transconductance of 814 S m?1. The fabrication process is straightforward and compatible with sensitive organic materials, and allows exceptional control over the transistor channel length. This novel 3D fabrication method is particularly suited for applications where high density is needed, such as in implantable devices.  相似文献   

3.
4.
Hydrophobic, self‐doped conjugated polyelectrolytes (CPEs) are introduced as highly stable active materials for organic electrochemical transistors (OECTs). The hydrophobicity of CPEs renders films very stable in aqueous solutions. The devices operate at gate voltages around zero and show no signs of degradation when operated for 104 cycles under ambient conditions. These properties make the produced OECTs ideal devices for applications in bioelectronics.  相似文献   

5.
Flexible fabric biosensors can find promising applications in wearable electronics. However, high‐performance fabric biosensors have been rarely reported due to many special requirements in device fabrication. Here, the preparation of organic electrochemical transistors (OECTs) on Nylon fibers is reported. By introducing metal/conductive polymer multilayer electrodes on the fibers, the OECTs show very stable performance during bending tests. The devices with functionalized gates are successfully used as various biosensors with high sensitivity and selectivity. The fiber‐based OECTs are woven together with cotton yarns successfully by using a conventional weaving machine, resulting in flexible and stretchable fabric biosensors with high performance. The fabric sensors show much more stable signals in the analysis of moving aqueous solutions than planar devices due to a capillary effect in fabrics. The fabric devices are integrated in a diaper and remotely operated by using a mobile phone, offering a unique platform for convenient wearable healthcare monitoring.  相似文献   

6.
7.
Inspired by the photosynthesis process of natural plants, multifunctional transistors based on natural biomaterial chlorophyll and organic semiconductors (OSCs) are reported. Functions as photodetectors (PDs) and light-stimulated synaptic transistors (LSSTs) can be switched by gate voltage. As PDs, the devices exhibit ultrahigh photoresponsivity up to 2 × 106 A W−1, detectivity of 6 × 1015 Jones, and Iphoto/Idark ratio of 2.7 × 106, which make them among the best reported organic PDs. As LSSTs, important synaptic functions similar to biological synapses are demonstrated, together with a dynamic learning and forgetting process and image-processing function. Significantly, benefiting from the ultrahigh photosensitivity of chlorophyll, the lowest operating voltage and energy consumption of the LSSTs can be 10−5 V and 0.25 fJ, respectively. The devices also exhibit high flexibility and long-term air stability. This work provides a new guide for developing organic electronics based on natural biomaterials.  相似文献   

8.
9.
10.
In recent years, organic electrochemical transistors (OECTs) have found applications in chemical and biological sensing and interfacing, neuromorphic computing, digital logic, and printed electronics. However, the incorporation of OECTs in practical electronic circuits is limited by the relative lack of control over their threshold voltage, which is important for controlling the power consumption and noise margin in complementary and unipolar circuits. Here, the threshold voltage of OECTs is precisely tuned over a range of more than 1 V by chemically controlling the electrochemical potential at the gate electrode. This threshold voltage tunability is exploited to prepare inverters and amplifiers with improved noise margin and gain, respectively. By coupling the gate electrode with an electrochemical oscillator, single‐transistor oscillators based on OECTs with dynamic time‐varying threshold voltages are prepared. This work highlights the importance of electrochemistry at the gate electrode in determining the electrical properties of OECTs, and opens a path toward the system‐level design of low‐power OECT‐based electronics.  相似文献   

11.
The analysis of protein biomarkers is of great importance in the diagnosis of diseases. Although many convenient and low‐cost electrochemical approaches have been extensively investigated, they are not sensitive enough in the detection of protein biomarkers with low concentrations in physiological environments. Here, this study reports a novel organic‐electrochemical‐transistor‐based biosensor that can successfully detect cancer protein biomarkers with ultrahigh sensitivity. The devices are operated by detecting electrochemical activity on gate electrodes, which is dependent on the concentrations of proteins labeled with catalytic nanoprobes. The protein sensors can specifically detect a cancer biomarker, human epidermal growth factor receptor 2, down to the concentration of 10?14 g mL?1, which is several orders of magnitude lower than the detection limits of previously reported electrochemical approaches. Moreover, the devices can successfully differentiate breast cancer cells from normal cells at various concentrations. The ultrahigh sensitivity of the protein sensors is attributed to the inherent amplification function of the organic electrochemical transistors. This work paves a way for developing highly sensitive and low‐cost biosensors for the detection of various protein biomarkers in clinical analysis in the future.  相似文献   

12.
Conjugated-polymer-based organic electrochemical transistors (OECTs) are being studied for applications ranging from biochemical sensing to neural interfaces. While new polymers that interface digital electronics with the aqueous chemistry of life are being developed, the majority of high-performance organic transistor materials are poor at transporting biologically relevant ions. Here, the operating mode of an organic transistor is changed from that of an electrolyte-gated organic field-effect transistor (EGOFET) to that of an OECT by incorporating an ion exchange gel between the active layer and the aqueous electrolyte. This device works by taking up biologically relevant ions from solution and injecting more hydrophobic ions into the active layer. Using poly[2,5-bis(3-tetradecylthiophen-2-yl) thieno[3,2-b]thiophene] as the active layer and a blend of an ionic liquid, 1-butyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, and poly(vinylidene fluoride-co-hexafluoropropylene) as the ion exchange gel, four orders of magnitude improvement in device transconductance and a 100-fold increase in kinetics are demonstrated. The ability of the ion-exchange-gel OECT to record biological signals by measuring the action potentials of a Venus flytrap is demonstrated. These results show the possibility of using interface engineering to open up a wider palette of organic semiconductors as OECTs that can be gated by aqueous solutions.  相似文献   

13.
A comprehensive understanding of electrochemical and physical phenomena originating the response of electrolyte‐gated transistors is crucial for improved handling and design of these devices. However, the lack of suitable tools for direct investigation of microscale effects has hindered the possibility to bridge the gap between experiments and theoretical models. In this contribution, a scanning probe setup is used to explore the operation mechanisms of organic electrochemical transistors by probing the local electrochemical potential of the organic film composing the device channel. Moreover, an interpretative model is developed in order to highlight the meaning of electrochemical doping and to show how the experimental data can give direct access to fundamental device parameters, such as local charge carrier concentration and mobility. This approach is versatile and provides insight into the organic semiconductor/electrolyte interface and useful information for materials characterization, device scaling, and sensing optimization.  相似文献   

14.
15.
The perspective of downscaling organic electrochemical transistors (OECTs) in the nanorange is approached by depositing poly(3,4‐ethylenedioxythiophene) polystyrene sulfonate (PEDOT:PSS) on electrodes with a nanogap designed and fabricated by electromigration induced break junction (EIBJ) technique. The electrical response of the fabricated devices is obtained by acquiring transfer characteristics in order to clarify the specific main characteristics of OECTs with sub‐micrometer‐sized active channels (nanogap‐OECTs). On the basis of their electrical response to different scan times, the nanogap‐OECT shows a maximum transconductance unaffected upon changing scan times in the time window from 1 s to 100 µs, meaning that fast varying signals can be easily acquired with unchanged amplifying performance. Hence, the scaling down of the channel size to the nanometer scale leads to a geometrical paradigm that minimizes effects on device response due to the cationic diffusion into the polymeric channel. A comprehensive study of these features is carried out by an electrochemical impedance spectroscopy (EIS) study, complemented by a quantitative analysis made by equivalent circuits. The propagation of a redox front into the polymer bulk due to ionic diffusion also known as the “intercalation pseudocapacitance” is identified as a limiting factor for the transduction dynamics.  相似文献   

16.
17.
18.
A series of glycolated polythiophenes for use in organic electrochemical transistors (OECTs) is designed and synthesized, differing in the distribution of their ethylene glycol chains that are tethered to the conjugated backbone. While side chain redistribution does not have a significant impact on the optoelectronic properties of the polymers, this molecular engineering strategy strongly impacts the water uptake achieved in the polymers. By careful optimization of the water uptake in the polymer films, OECTs with unprecedented steady-state performances in terms of [μC*] and current retentions up to 98% over 700 electrochemical switching cycles are developed.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号