首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
3.
4.
5.
Vertical organic thin‐film transistors (VOTFTs) are promising devices to overcome the transconductance and cut‐off frequency restrictions of horizontal organic thin‐film transistors. The basic physical mechanisms of VOTFT operation, however, are not well understood and VOTFTs often require complex patterning techniques using self‐assembly processes which impedes a future large‐area production. In this contribution, high‐performance vertical organic transistors comprising pentacene for p‐type operation and C60 for n‐type operation are presented. The static current–voltage behavior as well as the fundamental scaling laws of such transistors are studied, disclosing a remarkable transistor operation with a behavior limited by injection of charge carriers. The transistors are manufactured by photolithography, in contrast to other VOTFT concepts using self‐assembled source electrodes. Fluorinated photoresist and solvent compounds allow for photolithographical patterning directly and strongly onto the organic materials, simplifying the fabrication protocol and making VOTFTs a prospective candidate for future high‐performance applications of organic transistors.  相似文献   

6.
7.
Particular attention has been focused on n‐channel organic thin‐film transistors (OTFTs) during the last few years, and the potentially cost‐effective circuitry‐based applications in flexible electronics, such as flexible radiofrequency identity tags, smart labels, and simple displays, will benefit from this fast development. This article reviews recent progress in performance and molecular design of n‐channel semiconductors in the past five years, and limitations and practicable solutions for n‐channel OTFTs are dealt with from the viewpoint of OTFT constitution and geometry, molecular design, and thin‐film growth conditions. Strategy methodology is especially highlighted with an aim to investigate basic issues in this field.  相似文献   

8.
9.
Thin‐film transistors (TFTs) matured later than silicon integrated circuits, but in the past 15 years the technology has grown into a huge industry based on display applications, with amorphous and polycrystalline silicon as the incumbent technology. Recently, an intense search has developed for new materials and new fabrication techniques that can improve the performance, lower manufacturing cost, and enable new functionality. There are now many new options – organic semiconductor (OSCs), metal oxides, nanowires, printing technology as well as thin‐film silicon materials with new properties. All of the new materials have something to offer but none is entirely without technical problems.  相似文献   

10.
11.
12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号