首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
3.
4.
5.
6.
Particular attention has been focused on n‐channel organic thin‐film transistors (OTFTs) during the last few years, and the potentially cost‐effective circuitry‐based applications in flexible electronics, such as flexible radiofrequency identity tags, smart labels, and simple displays, will benefit from this fast development. This article reviews recent progress in performance and molecular design of n‐channel semiconductors in the past five years, and limitations and practicable solutions for n‐channel OTFTs are dealt with from the viewpoint of OTFT constitution and geometry, molecular design, and thin‐film growth conditions. Strategy methodology is especially highlighted with an aim to investigate basic issues in this field.  相似文献   

7.
8.
9.
10.
Ultrathin organic thin‐film transistors (OTFTs) have received extensive attention due to their outstanding advantages, such as extreme flexibility, good conformability, ultralight weight, and compatibility with low‐cost and large‐area solution‐processed techniques. However, compared with the rigid substrates, it still remains a challenge to fabricate high‐performance ultrathin OTFTs. In this study, a high‐performance ultrathin 2,7‐dioctyl[1]benzothieno[3,2‐b][1]benzothiophene (C8‐BTBT) OTFT array is demonstrated via a simple spin‐coating method, with mobility as high as 11 cm2 V−1 s−1 (average mobility: 7.22 cm2 V−1 s−1), on/off current ratio of over 106, switching current of >1 mA, and a good yield ratio as high as 100%. The ultrathin thickness at ≈380 nm and the ultralight weight at ≈0.89 g m−2 enable the free‐standing OTFTs to imperceptibly adhere onto human skin, and even a damselfly wing without affecting its flying. More importantly, the OTFTs show good electrical characteristics and mechanical stability when conformed onto the curved surfaces and even folded in a book after 100 folding cycles. These results illustrate the broad application potential of this simply fabricated ultrathin OTFT in next‐generation electronics such as foldable displays and wearable devices.  相似文献   

11.
12.
13.
14.
Recent studies of the bias‐stress‐driven electrical instability of organic field‐effect transistors (OFETs) are reviewed. OFETs are operated under continuous gate and source/drain biases and these bias stresses degrade device performance. The principles underlying this bias instability are discussed, particularly the mechanisms of charge trapping. There are three main charge‐trapping sites: the semiconductor, the dielectric, and the semiconductor‐dielectric interface. The charge‐trapping phenomena in these three regions are analyzed with special attention to the microstructural dependence of bias instability. Finally, possibilities for future research in this field are presented. This critical review aims to enhance our insight into bias‐stress‐induced charge trapping in OFETs with the aim of minimizing operational instability.  相似文献   

15.
Organic light‐emitting transistors (OLETs) represent an emerging class of organic optoelectronic devices, wherein the electrical switching capability of organic field‐effect transistors (OFETs) and the light‐generation capability of organic light‐emitting diodes (OLEDs) are inherently incorporated in a single device. In contrast to conventional OFETs and OLEDs, the planar device geometry and the versatile multifunctional nature of OLETs not only endow them with numerous technological opportunities in the frontier fields of highly integrated organic electronics, but also render them ideal scientific scaffolds to address the fundamental physical events of organic semiconductors and devices. This review article summarizes the recent advancements on OLETs in light of materials, device configurations, operation conditions, etc. Diverse state‐of‐the‐art protocols, including bulk heterojunction, layered heterojunction and laterally arranged heterojunction structures, as well as asymmetric source‐drain electrodes, and innovative dielectric layers, which have been developed for the construction of qualified OLETs and for shedding new and deep light on the working principles of OLETs, are highlighted by addressing representative paradigms. This review intends to provide readers with a deeper understanding of the design of future OLETs.  相似文献   

16.
17.
Stretchability will significantly expand the application scope of electronics, particularly large‐area electronics—displays, sensors, and actuators. If arbitrary surfaces and movable parts could be covered with stretchable electronics, which is impossible with conventional electronics, new classes of applications are expected to emerge. A large hurdle is manufacturing electrical wiring with high conductivity, high stretchability, and large‐area compatibility. This Review describes stretchable, large‐area electronics based on organic field‐effect transistors for applications to sensors and displays. First, novel net‐shaped organic transistors are employed to realize stretchable, large‐area sensor networks that detect distributions of pressure and temperature simultaneously. The whole system is functional even when it is stretched by 25%. In order to further improve stretchability, printable elastic conductors are developed by dispersing single‐walled carbon nanotubes (SWNTs) as dopants uniformly in rubbers. Further, we describe integration of printable elastic conductors with organic transistors to construct a rubber‐like stretchable active matrix for large‐area sensor and display applications. Finally, we will discuss the future prospects of stretchable, large‐area electronics with delineating a picture of the next‐generation human/machine interfaces from the aspect of materials science and electronic engineering.  相似文献   

18.
19.
The patterning of functional materials represents a crucial step for the implementation of organic semiconducting materials into functional devices. Classical patterning techniques such as photolithography or shadow masking exhibit certain limitations in terms of choice of materials, processing techniques and feasibility for large area fabrication. The use of self‐assembled monolayers (SAMs) as a patterning tool offers a wide variety of opportunities, from the region‐selective deposition of active components to guiding the crystallization direction. Here, we discuss general techniques and mechanisms for SAM‐based patterning and show that all necessary components for organic electronic devices, i.e., conducting materials, dielectrics, organic semiconductors, and further functional layers can be patterned with the use of self‐assembled monolayers. The advantages and limitations, and potential further applications of patterning approaches based on self‐assembled monolayers are critically discussed.  相似文献   

20.
The use of natural or bioinspired materials to develop edible electronic devices is a potentially disruptive technology that can boost point‐of‐care testing. The technology exploits devices that can be safely ingested, along with pills or even food, and operated from within the gastrointestinal tract. Ingestible electronics can potentially target a significant number of biomedical applications, both as therapeutic and diagnostic tool, and this technology may also impact the food industry, by providing ingestible or food‐compatible electronic tags that can “smart” track goods and monitor their quality along the distribution chain. Temporary tattoo‐paper is hereby proposed as a simple and versatile platform for the integration of electronics onto food and pharmaceutical capsules. In particular, the fabrication of all‐printed organic field‐effect transistors on untreated commercial tattoo‐paper, and their subsequent transfer and operation on edible substrates with a complex nonplanar geometry is demonstrated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号