共查询到20条相似文献,搜索用时 0 毫秒
1.
Lead‐Free Organic–Inorganic Hybrid Perovskites for Photovoltaic Applications: Recent Advances and Perspectives 下载免费PDF全文
Zejiao Shi Jia Guo Yonghua Chen Qi Li Yufeng Pan Haijuan Zhang Yingdong Xia Wei Huang 《Advanced materials (Deerfield Beach, Fla.)》2017,29(16)
Organic–inorganic hybrid halide perovskites (e.g., MAPbI3) have recently emerged as novel active materials for photovoltaic applications with power conversion efficiency over 22%. Conventional perovskite solar cells (PSCs); however, suffer the issue that lead is toxic to the environment and organisms for a long time and is hard to excrete from the body. Therefore, it is imperative to find environmentally‐friendly metal ions to replace lead for the further development of PSCs. Previous work has demonstrated that Sn, Ge, Cu, Bi, and Sb ions could be used as alternative ions in perovskite configurations to form a new environmentally‐friendly lead‐free perovskite structure. Here, we review recent progress on lead‐free PSCs in terms of the theoretical insight and experimental explorations of the crystal structure of lead‐free perovskite, thin film deposition, and device performance. We also discuss the importance of obtaining further understanding of the fundamental properties of lead‐free hybrid perovskites, especially those related to photophysics. 相似文献
2.
Zhiming Shi Zhen Cao Xiaojuan Sun Yuping Jia Dabing Li Luigi Cavallo Udo Schwingenschlgl 《Small (Weinheim an der Bergstrasse, Germany)》2019,15(16)
2D organic–inorganic hybrid perovskites (OIHPs) may resolve the stability problem of bulk OIHPs. First‐principles calculations are employed to investigate the mechanism behind their favorable material properties. Two processes are identified to play a critical role: First, the 2D structure supports additional distortions that enhance the intrinsic structural stability. Second, the surface terminations of 2D OIHPs suppress degradation effects due to humidity. Having uncovered the stabilization mechanism, 2D OIHPs are designed with optimal stability and favorable electronic properties. 相似文献
3.
Efficient Room‐Temperature Phosphorescence from Organic–Inorganic Hybrid Perovskites by Molecular Engineering 下载免费PDF全文
Hongwei Hu Fabian Meier Daming Zhao Yuichiro Abe Yang Gao Bingbing Chen Teddy Salim Elbert E. M. Chia Xianfeng Qiao Carsten Deibel Yeng Ming Lam 《Advanced materials (Deerfield Beach, Fla.)》2018,30(36)
Solution‐processed organic–inorganic hybrid perovskites are promising emitters for next‐generation optoelectronic devices. Multiple‐colored, bright light emission is achieved by tuning their composition and structures. However, there is very little research on exploring optically active organic cations for hybrid perovskites. Here, unique room‐temperature phosphorescence from hybrid perovskites is reported by employing novel organic cations. Efficient room‐temperature phosphorescence is activated by designing a mixed‐cation perovskite system to suppress nonradiative recombination. Multiple‐colored phosphorescence is achieved by molecular design. Moreover, the emission lifetime can be tuned by varying the perovskite composition to achieve persistent luminescence. Efficient room‐temperature phosphorescence is demonstrated in hybrid perovskites that originates from the triplet states of the organic cations, opening a new dimension to the further development of perovskite emitters with novel functional organic cations for versatile display applications. 相似文献
4.
Guankui Long Yecheng Zhou Mingtao Zhang Randy Sabatini Abdullah Rasmita Li Huang Girish Lakhwani Weibo Gao 《Advanced materials (Deerfield Beach, Fla.)》2019,31(17)
Hybrid organic–inorganic perovskites (HOIPs), in particular 3D HOIPs, have demonstrated remarkable properties, including ultralong charge‐carrier diffusion lengths, high dielectric constants, low trap densities, tunable absorption and emission wavelengths, strong spin–orbit coupling, and large Rashba splitting. These superior properties have generated intensive research interest in HOIPs for high‐performance optoelectronics and spintronics. Here, 3D hybrid organic–inorganic perovskites that implant chirality through introducing the chiral methylammonium cation are demonstrated. Based on structural optimization, phonon spectra, formation energy, and ab initio molecular dynamics simulations, it is found that the chirality of the chiral cations can be successfully transferred to the framework of 3D HOIPs, and the resulting 3D chiral HOIPs are both kinetically and thermodynamically stable. Combining chirality with the impressive optical, electrical, and spintronic properties of 3D perovskites, 3D chiral perovskites is of great interest in the fields of piezoelectricity, pyroelectricity, ferroelectricity, topological quantum engineering, circularly polarized optoelectronics, and spintronics. 相似文献
5.
Jingying Wang Chuang Zhang Haoliang Liu Xiaojie Liu Hangwen Guo Dali Sun Zeev Valy Vardeny 《Advanced materials (Deerfield Beach, Fla.)》2019,31(41)
The hybrid organic–inorganic perovskites (HOIPs) form a new class of semiconductors which show promising optoelectronic device applications. Remarkably, the optoelectronic properties of HOIP are tunable by changing the chemical components of their building blocks. Recently, the HOIP spintronic properties and their applications in spintronic devices have attracted substantial interest. Here the impact of the chemical component diversity in HOIPs on their spintronic properties is studied. Spin valve devices based on HOIPs with different organic cations and halogen atoms are fabricated. The spin diffusion length is obtained in the various HOIPs by measuring the giant magnetoresistance (GMR) response in spin valve devices with different perovskite interlayer thicknesses. In addition spin lifetime is also measured from the Hanle response. It is found that the spintronic properties of HOIPs are mainly determined by the halogen atoms, rather than the organic cations. The study provides a clear avenue for engineering spintronic devices based on HOIPs. 相似文献
6.
Hybrid organic–inorganic perovskite materials garner enormous attention for a wide range of optoelectronic devices. Due to their attractive optical and electrical properties including high optical absorption coefficient, high carrier mobility, and long carrier diffusion length, perovskites have opened up a great opportunity for high performance photodetectors. This review aims to give a comprehensive summary of the significant results on perovskite‐based photodetectors, focusing on the relationship among the perovskite structures, device configurations, and photodetecting performances. An introduction of recent progress in various perovskite structure‐based photodetectors is provided. The emphasis is placed on the correlation between the perovskite structure and the device performance. Next, recent developments of bandgap‐tunable perovskite and hybrid photodetectors built from perovskite heterostructures are highlighted. Then, effective approaches to enhance the stability of perovskite photodetector are presented, followed by the introduction of flexible and self‐powered perovskite photodetectors. Finally, a summary of the previous results is given, and the major challenges that need to be addressed in the future are outlined. A comprehensive summary of the research status on perovskite photodetectors is hoped to push forward the development of this field. 相似文献
7.
8.
9.
Taehee Kim Seok Il Jung Sujin Ham Heejae Chung Dongho Kim 《Small (Weinheim an der Bergstrasse, Germany)》2019,15(33)
Halide perovskites (ABX3) have emerged as promising materials in the past decade owing to their superior photophysical properties, rendering them potential candidates as solar cells, light‐emitting diode displays, and lasing materials. To optimize their utilization into optoelectronic devices, fundamental understanding of the optical behaviors is necessary. To reveal the comprehensive structure–property relationship, CH3NH3PbBr3 (MAPbBr3) perovskite quantum dots (PQDs) of three different sizes are prepared by controlling the precipitation temperature. Photoluminescence (PL) blinking, a key process that governs the emission efficiency of the PQD materials, is investigated in detail by the time‐resolved spectroscopic measurements of individual dots. The nature of the generated species in the course of blinking events is identified, and the mechanism governing the PL blinking is studied as a function of PQD sizes. Further, the practical applicability of MAPbBr3 PQDs is assessed by studying the multiexciton dynamics under high photoexcitation intensity under which most of the display devices work. Ultrafast transient absorption spectroscopy helped in uncovering the volume‐dependent Auger recombination rates, which are further explored by comparing the early‐time transitions related to surface trap states and higher band states. 相似文献
10.
11.
C. Sanchez B. Lebeau F. Chaput J.‐P. Boilot 《Advanced materials (Deerfield Beach, Fla.)》2003,15(23):1969-1994
Functional hybrids are nanocomposite materials lying at the interface of organic and inorganic realms, whose high versatility offers a wide range of possibilities to elaborate tailor‐made materials in terms of chemical and physical properties. Because they present several advantages for designing materials for optical applications (versatile and relatively facile chemistry, easy shaping and patterning, materials having good mechanical integrity and excellent optical quality), numerous silica or/and siloxane based hybrid organic–inorganic materials have been developed in the past few years. The most striking examples of functional hybrids exhibiting emission properties (solid‐state dye lasers, rare‐earth doped hybrids, electroluminescent devices), absorption properties (photochromic), nonlinear optical (NLO) properties (second‐order NLO properties, photochemical hole burning (PHB), photorefractivity), and sensing are summarized in this review. 相似文献
12.
13.
14.
Materials science evolves to a state where the composition and structure of a crystal can be controlled almost at will. Given that a composition meets basic requirements of stoichiometry, steric demands, and charge neutrality, researchers are now able to investigate a wide range of compounds theoretically and, under various experimental conditions, select the constituting fragments of a crystal. One intriguing playground for such materials design is the perovskite structure. While a game of mixing and matching ions has been played successfully for about 150 years within the limits of inorganic compounds, the recent advances in organic–inorganic hybrid perovskite photovoltaics have triggered the inclusion of organic ions. Organic ions can be incorporated on all sites of the perovskite structure, leading to hybrid (double, triple, etc.) perovskites and inverse (hybrid) perovskites. Examples for each of these cases are known, even with all three sites occupied by organic molecules. While this change from monatomic ions to molecular species is accompanied with increased complexity, it shows that concepts from traditional inorganic perovskites are transferable to the novel hybrid materials. The increased compositional space holds promising new possibilities and applications for the universe of perovskite materials. 相似文献
15.
Forming two structurally different but associated polymer structures in a single step is a possible route for the production of nanostructured materials. By means of twin polymerization of specially constructed monomers consisting of two different covalently bonded building blocks (hybrid monomers), this route is realized. What is important is that two different macromolecular structures are formed from one monomer in a single process. The two polymers formed can be linear, branched, or cross‐linked structures. The molecular composition of the hybrid monomer defines the degree of cross‐linking of the corresponding macromolecular structures that is theoretically possible. 相似文献
16.
17.
Hybrid Perovskite Light‐Emitting Diodes Based on Perovskite Nanocrystals with Organic–Inorganic Mixed Cations 下载免费PDF全文
Xiaoli Zhang He Liu Weigao Wang Jinbao Zhang Bing Xu Ke Lin Karen Yuanjin Zheng Sheng Liu Shuming Chen Kai Wang Xiao Wei Sun 《Advanced materials (Deerfield Beach, Fla.)》2017,29(18)
Organic–inorganic hybrid perovskite materials with mixed cations have demonstrated tremendous advances in photovoltaics recently, by showing a significant enhancement of power conversion efficiency and improved perovskite stability. Inspired by this development, this study presents the facile synthesis of mixed‐cation perovskite nanocrystals based on FA(1?x )Csx PbBr3 (FA = CH(NH2)2). By detailed characterization of their morphological, optical, and physicochemical properties, it is found that the emission property of the perovskite, FA(1?x )Csx PbBr3, is significantly dependent on the substitution content of the Cs cations in the perovskite composition. These mixed‐cation perovskites are employed as light emitters in light‐emitting diodes (LEDs). With an optimized composition of FA0.8Cs0.2PbBr3, the LEDs exhibit encouraging performance with a highest reported luminance of 55 005 cd m?2 and a current efficiency of 10.09 cd A?1. This work provides important instructions on the future compositional optimization of mixed‐cation perovskite for obtaining high‐performance LEDs. The authors believe this work is a new milestone in the development of bright and efficient perovskite LEDs. 相似文献
18.
19.
Memory Devices: Resistive Switching Behavior in Organic–Inorganic Hybrid CH3NH3PbI3−xClx Perovskite for Resistive Random Access Memory Devices (Adv. Mater. 40/2015) 下载免费PDF全文
Eun Ji Yoo Miaoqiang Lyu Jung‐Ho Yun Chi Jung Kang Young Jin Choi Lianzhou Wang 《Advanced materials (Deerfield Beach, Fla.)》2015,27(40):6303-6303