首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The renin-angiotensin system is a major determinant of arterial pressure and volume homeostasis in mammals through the actions of angiotensin II, the proteolytic digestion product of angiotensinogen. Molecular genetic studies in several human populations have revealed genetic linkage between the angiotensinogen gene and both hypertension and increased plasma angiotensinogen. Transgenic mice were generated with a human angiotensinogen genomic clone to develop an animal model to examine tissue- and cell-specific expression of the gene and to determine if overexpression of angiotensinogen results in hypertension. Human angiotensinogen mRNA was expressed in transgenic mouse liver, kidney, heart, adrenal gland, ovary, brain, and white and brown adipose tissue and, in kidney, was exclusively localized to epithelial cells of the proximal convoluted tubules. Plasma levels of human angiotensinogen were approximately 150-fold higher in transgenic mice than that found normally in human plasma. The blood pressure of mice bearing the human angiotensinogen gene was normal but infusion of a single bolus dose of purified human renin resulted in a transient increase in blood pressure of approximately 30 mm Hg within 2 min. These results suggest that abnormalities in the angiotensinogen gene resulting in increased circulating levels of angiotensinogen could potentially contribute in part to the pathogenesis of essential hypertension.  相似文献   

2.
3.
4.
5.
The discovery of the superantigens (SAgs) offered new insights on the interaction between microorganisms and the host immune system. Associated to Major Histocompatibility Complex (MHC) class II molecules, SAgs bind to the variable domain of the beta chain (V beta) of the TCR alpha beta engaged in the family specificity of lymphocytes. Therefore, these molecules are able to activate a high number of T lymphocytes as well as surface MHC class II bearing cells, leading to an overriding release of cytokines and inflammatory mediators, which have been related to their toxic effects. Endogenous SAgs are encoded by murine tumor proviruses (Mtv) which are integrated in the genome of mice. Bacteria and viruses produce exogenous SAgs and those related to food poisoning have been widely studied. The presence of parasite SAgs is still unclear and further studies are required to establish their existence and effects on the corresponding infections.  相似文献   

6.
7.
8.
In vitro, IL-6 is the main inducer of the human C-reactive protein (CRP) gene, and IL-1 and steroids can enhance this effect. However, in mice, IL-6 is necessary but not sufficient for induction of the human CRP transgene, and testosterone is required for its constitutive expression by males. To examine the relative contributions of testosterone and IL-6 in the regulation of CRP gene expression, we produced CRP-transgenic (CRPtg), IL-6-deficient (IL-6-/-) mice. Male CRPtg/IL-6-/- mice expressed CRP constitutively, but CRP levels were not increased after injection of LPS. However, acute-phase CRP levels were attained after injection of IL-6. In contrast, female CRPtg/IL-6-/- mice did not express CRP constitutively or after administration of LPS, IL-6, IL-1, or IL-6 plus IL-1. Like males, testosterone-treated CRPtg/IL-6-/- females expressed CRP constitutively, and their transgene responded to injection of IL-6. The endogenous acute-phase protein serum amyloid P (SAP) was expressed constitutively equally by male and female IL-6-/- mice, responded minimally to LPS, and did not respond to either IL-6 or IL-1 alone. Acute-phase levels of SAP were induced in IL-6-/- mice by injection of IL-6 together with IL-1 or LPS. We conclude that in vivo, both constitutive and IL-6-dependent acute-phase expression of the CRP transgene require testosterone. In contrast, testosterone is not required for expression of the SAP gene, which requires IL-1 plus IL-6 for acute-phase induction.  相似文献   

9.
The Sertoli cells of many species produce an androgen binding protein (ABP) which carries testicular androgens to the epididymis and is thought to play a role in sperm maturation. In the present report we analyzed the morphological modifications present in Leydig, Sertoli, and peritubular cells of the testis of young adult male mice transgenic for ABP gene, which overproduce ABP in testis. By in situ hybridization we demonstrated that ABP is specifically produced by Sertoli cells. Using light and electron microscopy, we detected scattered alterations of the seminiferous tubule cells which include cell degeneration and vacuolization. Leydig and Sertoli cells present morphological signs of hyperfunctioning compensatory mechanisms which include increased amounts of lipid droplets probably due to the existence of a stimulated steroid synthesis that in turn could be a consequence of the decreased unbound testosterone and/or a direct paracrine effect of ABP. Peritubular cells also present numerous signs of hyperstimulation.  相似文献   

10.
11.
Fibrinogen is a complex plasma protein composed of two each of three different polypeptide chains. We have targeted expression of r-human fibrinogen to the mammary gland of transgenic mice. Three expression cassettes, each containing the genomic sequence for one of the three human fibrinogen chains controlled by sheep whey protein beta-lactoglobulin promoter sequences, were coinjected into fertile mouse eggs. Southern blot analysis demonstrated that more than 80% of the transgenic founders contained all three fibrinogen genes. Reducing sodium dodecyl sulfate polyacrylamide gel electrophoresis of milk from the highest producing founder animal demonstrated the presence of human fibrinogen subunits at concentrations of 2000 micrograms/ml. In several animals with a balanced ratio of the individual fibrinogen subunits, up to 100% of the protein was incorporated into fully assembled fibrinogen hexamers. Incubation of the transgenic milk with thrombin and factor XIII resulted in a cross-linked fibrin clot, indicating that a major portion of the secreted fibrinogen was functional. These studies represent the first report of high-level biosynthesis and secretion of a functional, complex, hexameric protein in the milk of a transgenic animal.  相似文献   

12.
13.
The myeloperoxidase (MPO) gene is expressed specifically in immature myeloid cells. The MPO gene includes a promoter proximal enhancer which is coincident with DNaseI hypersensitive chromatin sites and is specifically active in myeloid cell lines. We developed transgenic murine lines in which 1.3 kb of murine MPO proximal 5' flanking region DNA was linked to a TATAA homology and RNA initiation site derived from the HSV-TK promoter and to a luciferase reporter (MPOTKLUC). In each of six founder lines, high-level luciferase activity was evident in marrow, thymus and spleen. Modest- to high-level luciferase expression was also evident in brain and in the heart in several of the lines, and luciferase activity was at or near background levels in lung, liver, kidney, stomach, colon, bladder, skeletal muscle, skin and small intestine in all of the MPOTKLUC transgenic mice. Within marrow cells, luciferase activity was evident in myeloid (GR-1+), B lymphoid (B220+) and T-lymphoid (CD4+) cells. Additional regulatory regions, thus, may be required to further restrict MPO gene expression to immature myeloid cells.  相似文献   

14.
Farnesylation mediates membrane targeting and in vivo activities of several key regulatory proteins such as Ras and Ras-related GTPases and protein kinases in yeast and mammals, and is implicated in cell cycle control and abscisic acid (ABA) signaling in plants. In this study, the developmental expression of a pea protein farnesyltransferase (FTase) gene was examined using transgenic expression of the beta-glucuronidase (GUS) gene fused to a 3.2 kb 5' upstream sequence of the gene encoding the pea FTase beta subunit. Coordinate expression of the GUS transgene and endogenous tobacco FTase beta subunit gene in tobacco cell lines suggests that the 3.2 kb region contains the key FTase promoter elements. In transgenic tobacco plants, GUS expression is most prominent in meristematic tissues such as root tips, lateral root primordia and the shoot apex, supporting a role for FTase in the control of the cell cycle in plants. GUS activity was also detected in mature embryos and imbibed embryos, in accordance with a role for FTase in ABA signaling that modulates seed dormancy and germination. In addition, GUS activity was detected in regions that border two organs, e.g. junctions between stems and leaf petioles, cotyledons and hypocotyls, roots and hypocotyls, and primary and secondary roots. GUS is expressed in phloem complexes that are adjacent to actively growing tissues such as young leaves, roots of light-grown seedlings, and hypocotyls of dark-grown seedlings. Both light and sugar (e.g. sucrose) treatments repressed GUS expression in dark-grown seedlings. These expression patterns suggest a potential involvement of FTase in the regulation of nutrient allocation into actively growing tissues.  相似文献   

15.
CD14 is a major receptor for the bacterial endotoxin LPS. Since CD14 is specifically and highly expressed on the surface of monocytic cells, it has been used as a monocyte/macrophage differentiation marker. To identify elements that are critical for the direction of the tissue-specific expression of CD14, an 80-kb genomic DNA fragment containing the coding region of the CD14 gene, as well as a considerable amount of both upstream and downstream sequence, was used to generate transgenic mice. The analysis of mice from six different founder lines demonstrated that this genomic DNA fragment was sufficient to direct human CD14 gene expression in a monocyte-specific manner among hematopoietic cells. Furthermore, the data lead us to a new finding that CD14 is highly expressed in the human liver, a primary organ involved in the acute phase response. These transgenic mice provide a useful model to analyze the biological function of human CD14.  相似文献   

16.
The major iron-transport protein in serum is transferrin (TF) which also has the capacity to transport other metals. This report presents evidence that synthesis of human TF can be regulated by the metal lead. Transgenic mice carrying chimeric human TF-chloramphenicol acetyl transferase (CAT) genes received lead or sodium salts by intraperitoneal injections or in drinking water. Transgene expression in liver was suppressed 31 to 50% by the lead treatment. Lead regulates human TF transgenes at the mRNA level since liver CAT enzyme activity, CAT protein, and TF-CAT mRNA levels were all suppressed. The dosages of lead did not alter synthesis of the other liver proteins, mouse TF and albumin, as measured by Northern blot analysis of total liver RNA and rocket immunoelectrophoresis of mouse sera. Moderate levels of lead exposure were sufficient to evoke the human TF transgene response; blood lead levels in mice that received lead acetate in drinking water ranged from 30 micrograms/dl to 56 micrograms/dl. In addition to suppressing expression of TF-CAT genes in transgenic mice, lead also suppressed synthesis of TF protein in cultured human hepatoma HepG2 cells. The regulation of human TF apparently differs from the regulation of mouse TF which is unresponsive to lead exposure.  相似文献   

17.
We studied the development of liver tumors in male HBx gene transgenic mice. Of two lineages studied, in the lineage with the lowest HBx gene expression liver tumors developed only in an incidence comparable with that in normal CD-1 strain, whereas 84% of male mice with a high level of the HBx gene product succumbed to liver neoplasia, indicating that continued HBx gene expression higher than a certain threshold level may be necessary for the development of hepatic neoplasia. Sixty-five mice from a lineage with a high level of HBx expression were then followed throughout their 24-mo lifespan. The livers of transgenic mice showed foci of cellular alteration with cytoplasmic vacuolations around the central veins from the age of 2 mo, but these foci did not expand progressively by the age of 12 mo. Immunostaining demonstrated such hepatocytes had higher expression of HBx protein than surrounding cells. Neoplastic lesions including liver cell adenomas and hepatocellular carcinomas developed from the age of 13 mo. By bromodeoxyuridine labeling analysis, hepatocytes in altered foci were found to have increased DNA synthesis, whereas no labeling was observed in age- and sex-matched nontransgenic littermate controls. Furthermore, DNA content analysis revealed the existence of several small aneuploid peaks in the transgenic liver before the age of tumor development. These results suggest that the continued expression of HBx gene may initiate a complex process to hepatocellular carcinoma by inducing DNA synthesis and placing large numbers of hepatocytes subjective to secondary events for transformation.  相似文献   

18.
Two strategies for crossbreeding of indigenous and exotic cattle for milk production in the tropics, viz. rotational crossing and formation of a composite breed, have been compared. Genetic considerations suggest that rotational crossing would lead to somewhat better dairy performance, mainly because of more heterozygosity. Predictions based on the performance of adjacent genetic groups as obtained from a comprehensive literature review point in the same direction. Rotational crossbreeding depends on a continuous introduction of bulls of both parental breeds. The herd will consist of 2 (or more) genetic groups, which might be inconvenient for breeding arrangements, but provides more flexibility. The system requires good organisation and is most suitable in large farms. In small scale dairying the composite breed strategy is the most practical approach to dairy cattle breeding in the tropics.  相似文献   

19.
Expression of transgenes in mice often fails to follow the normal temporal and spatial pattern and to reach the same level as the endogenous copies. Only in exceptional cases has position-independent and copy number-dependent expression been reproduced. The size constraint of standard constructs may prevent the inclusion of important remote regulatory elements. Yeast artificial chromosomes (YACs) provide a means of cloning large DNA fragments and the transfer of YAC DNA into somatic cells has been reported. We have previously produced transgenic mice carrying a 35 kilobase YAC construct. Here we report the transfer of a 250 kilobase YAC covering the mouse tyrosinase gene into mice by pronuclear injection of gel-purified YAC DNA. The YAC was inserted into the mouse genome without major rearrangements and expression of the YAC-borne tyrosinase gene resulted in complete rescue of the albino phenotype of the recipient mice. Expression from the transgene reached levels comparable to that of the endogenous gene and showed copy number dependence and position independence.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号