共查询到20条相似文献,搜索用时 11 毫秒
1.
DNA hybridization and discrimination of single-nucleotide mismatches using chip-based microbead arrays 总被引:3,自引:0,他引:3
Ali MF Kirby R Goodey AP Rodriguez MD Ellington AD Neikirk DP McDevitt JT 《Analytical chemistry》2003,75(18):4732-4739
The development of a chip-based sensor array composed of individually addressable agarose microbeads has been demonstrated for the rapid detection of DNA oligonucleotides. Here, a "plug and play" approach allows for the simple incorporation of various biotinylated DNA capture probes into the bead-microreactors, which are derivatized in each case with avidin docking sites. The DNA capture probe containing microbeads are selectively arranged in micromachined cavities localized on silicon wafers. The microcavities possess trans-wafer openings, which allow for both fluid flow through the microreactors/analysis chambers and optical access to the chemically sensitive microbeads. Collectively, these features allow the identification and quantitation of target DNA analytes to occur in near real time using fluorescence changes that accompany binding of the target sample. The unique three-dimensional microenvironment within the agarose bead and the microfluidics capabilities of the chip structure afford a fully integrated package that fosters rapid analyses of solutions containing complex mixtures of DNA oligomers. These analyses can be completed at room temperature through the use of appropriate hybridization buffers. For applications requiring analysis of < or = 10(2) different DNA sequences, the hybridization times and point mutation selectivity factors exhibited by this bead array method exceed in many respects the operational characteristics of the commonly utilized planar DNA chip technologies. The power and utility of this microbead array DNA detection methodology is demonstrated here for the analysis of fluids containing a variety of similar 18-base oligonucleotides. Hybridization times on the order of minutes with point mutation selectivity factors greater than 10000 and limit of detection values of approximately 10(-13) M are obtained readily with this microbead array system. 相似文献
2.
Naphthyridine-azaquinolone (Npt-Azq, described previously by Nakatani et al. ( Nakatani, K.; Hagihara, S.; Goto, Y.; Kobori, A.; Hagihara, M.; Hayashi, G.; Kyo, M.; Nomura, M.; Mishima, M.; Kojima, C. Nat. Chem. Biol. 2005, 1, 39-43.), was exploited to detect an adenine-adenine mismatch with a symmetrical G-C flanking sequence (5'-GAC-3'/5'-CAG-3') in a synthetic 20-mer DNA by electrochemical impedance spectroscopy. This innovative strategy enables us to obtain information about the presence of a specific mismatch in addition to sequence information. Npt-Azq binds the G-A region of the mismatch, which causes significant changes in the structure of the DNA, which in turn causes changes in the electrochemical properties of DNA/Npt-Azq films. For a 20-mer DNA containing an A-A mismatch, the electron-transfer resistance (RCT) of the system is significantly different in the presence of bound Npt-Azq, presumably due to the structural differences in the two films. Npt-Azq does not bind to matched DNA, and thus, the presence of Npt-Azq does not affect the electrochemical properties of such films. 相似文献
3.
The detection of a single-nucleotide mismatch in unlabeled duplex DNA by electrochemical methods is presented. Impedance spectroscopy is used to characterize a perfect duplex monolayer and three DNA monolayers differing in the position of the mismatch. The monolayers were studied as B-DNA (normal duplex DNA) and after conversion to M-DNA (a metalated duplex). Modeling of the impedance data to an equivalent circuit provides parameters that are useful in discriminating the four monolayer configurations. The resistance to charge transfer, R(CT), was lower for all duplexes after conversion to M-DNA. Contrary to expectations, R(CT) was also found to decrease for duplexes containing a mismatch. However, R(CT) was found to be diagnostic for mismatch detection. In particular, the difference in R(CT) between B- and M-DNA (deltaR(CT)) decreased from 190(22) omega.cm(2) for a perfectly matched duplex to 95(20), 30(20), and 85(20) omega.cm(2) for a mismatch at the top (distal), middle, and bottom (proximal) positions of the monolayer with respect to the gold surface. Further, a method to form loosely packed single-stranded (ss)-DNA monolayers by duplex dehybridization that is able to rehybridize to target strands is presented. Rehybridization efficiencies were in the range of 40-70%. Under incomplete hybridization conditions, the R(CT) was the same for matched and mismatched duplexes under B-DNA conditions. However, deltaR(CT) between B- and M-DNA, under incomplete hybridization, still provided a distinction. The deltaR(CT) for a perfect duplex was 76(12) omega.cm(2), whereas a mismatch in the middle of the sequence yielded a deltaR(CT) value of 30(15) omega.cm(2). The detection limit was measured and the impedance methodology reliably detected single DNA base pair mismatches at concentrations as low as 100 pM. 相似文献
4.
Gold electrode arrays with electrode diameters of 10 mum were used for the detection of eight single-nucleotide mismatches in unlabeled and prehybridized DNA by electrochemical impedance spectroscopy (EIS). Because of the differences in the electrical properties of films of duplex DNA (normal duplex DNA in B-form) in the presence and absence of Zn(2+) at pH > or = 8.6, Randles equivalent circuits were employed to evaluate the EIS results. The difference in the charge-transfer resistance (DeltaR(CT)) between B-DNA (absence of Zn2+ at pH > or = 8.6) and M-DNA (presence of Zn2+ at pH > or = 8.6) allows unequivocal detection of all eight single-nucleotide mismatches within a 20-mer DNA sequence. After dehybridization/rehybridization with target DNA, DeltaR(CT) allows the discrimination of single-nucleotide mismatches with concentrations of the target strand as low as 10 fM. Although the presence of protein impurities (bovine serum albumin, 10 microg/mL) interferes with the detection of the target strand (1 pM detection limit), the presence of nontarget DNA (calf thymus DNA, 10(-8) M) does not interfere, and the detection limit for recognition of the target strand remains at 10 fM. 相似文献
5.
An unlabeled hairpin-DNA probe was used for the detection of eight single-nucleotide mismatches by electrochemical impedance spectroscopy (EIS). Upon hybridization of the target strand with the hairpin DNA probe, the stem-loop structure is opened and forms a duplex DNA. Accordingly, the film thickness is increased, which causes differences in the electrical properties of the film before and after hybridization. Randles equivalent circuits were employed to evaluate the EIS result. The differences in the charge-transfer resistance DeltaR(CT) between hairpin DNA (before hybridization) and duplex DNA (after hybridization) shows the consequence of a large structural rearrangement from hairpin to duplex. If a single-nucleotide mismatch is present in the center of the duplex, the difference in charge-transfer resistance DeltaR(CT) between B-DNA in the absence and presence of Zn(2+) allows the unequivocal detection of all eight single-nucleotide mismatches. The detection limit was measured, and DeltaR(CT) allows the discrimination of a single-nucleotide mismatch with the concentration of the target strand as low as 10 pM. 相似文献
6.
This work describes an integrated microfluidic (mu-fl) device that can be used to effect separations that discriminate single-nucleotide polymorphisms (SNP) based on kinetic differences in the lability of perfectly matched (PM) and mismatched (MM) DNA duplexes during alkaline dehybridization. For this purpose a 21-base single-stranded DNA (ssDNA) probe sequence was immobilized on agarose-coated magnetic beads, that in turn can be localized within the channels of a poly(dimethylsiloxane) microfluidic device using an embedded magnetic separator. The PM and MM ssDNA targets were hybridized with the probe to form a mixture of PM and MM DNA duplexes using standard protocols, and the hydroxide ions necessary for mediating the dehybridization were generated electrochemically in situ by performing the oxygen reduction reaction (ORR) using O2 that passively permeates the device at a Pt working electrode (Pt-WE) embedded within the microfluidic channel system. The alkaline DNA dehybridization process was followed using fluorescence microscopy. The results of this study show that the two duplexes exhibit different kinetics of dehybridization, rate profiles that can be manipulated as a function of both the amount of the hydroxide ions generated and the mass-transfer characteristics of their transport within the device. This system is shown to function as a durable platform for effecting hybridization/dehybridization cycles using a nonthermal, electrochemical actuation mechanism, one that may enable new designs for lab-on-a-chip devices used in DNA analysis. 相似文献
7.
In this work, we describe and implement an electrokinetic approach for single-nucleotide polymorphism (SNP) discrimination using a PDMS/glass-based microfluidic chip. The technique takes advantage of precise control of the coupled thermal (Joule heating), shear (electroosmosis), and electrical (electrophoresis) energies present at an array of probes afforded by the application of external electrical potentials. Temperature controllers and embedded thermal devices are not required. The chips can be easily and inexpensively fabricated using standard microarray printing methods combined with soft-lithography patterned PDMS fluidics, making these systems easily adaptable to applications using higher density arrays. Extensive numerical simulations of the coupled flow and thermal properties and microscale thermometry experiments are described and used to characterize the in-channel conditions. It was found that optimal conditions for SNP detection occur at a lower temperature on-chip than for typical microarray experiments, thereby revealing the importance of the electrical and shear forces to the overall process. To demonstrate the clinical utility of the technique, the detection of single-base pair mutations in the survival motor neuron gene, associated with the childhood disease spinal muscular atrophy, is conducted. 相似文献
8.
9.
An overview of photothermal deflection principles and applications is given. The modeling of temperature distribution and the calculation of deflection that is due to both the refractive-index gradient and the thermal deformation of the sample are presented. Three configurations usually employed are compared, and their respective advantages are discussed in relation to their application. The calibration for absolute measurement of absorption is detailed, showing that calibration limits the accuracy of measurement. Some examples of specific information obtained by photothermal mapping of absorption are given. 相似文献
10.
We report the use of microcantilevers (MCs) for the detection of three retinoid isomers: 9-cis-retinal, 13-cis-retinal and all-trans-retinal. Detection of synthetic and natural retinoids in topical cosmetic products is important, and their presence can be used to predict reactions with the skin surface. In this study the MC surfaces were functionalized in order to promote the formation of covalent bonds with the chromophores. The lowest mass shift we detected with the functionalized MCs was 1.2 ppt, which is in the range needed by the cosmetics industry. Our results indicate that properly designed and functionalized microcantilevers can be used to construct economical, fast, and sensitive sensors for quality control in cosmetics. 相似文献
11.
We report a sensitive, label-free method for detecting single-stranded DNA and discriminating between single nucleotide polymorphisms (SNPs) using arrays of silicon photonic microring resonators. In only a 10 min assay, DNA is detected at subpicomole levels with a dynamic range of 3 orders of magnitude. Following quantitation, sequence discrimination with single nucleotide resolution is achieved isothermally by monitoring the dissociation kinetics of the duplex in real-time using an array of SNP-specific capture probes. By leveraging the capabilities of the microring resonator platform, we successfully generate multiplexed arrays to quickly screen for the presence and identity of SNPs and show the robustness of this methodology by analyzing multiple target sequences of varying GC content. Furthermore, we show that this technique can be used to distinguish both homozygote and heterozygote alleles. 相似文献
12.
We have developed an atomic force microscopy-based method for detecting DNA base-pair mismatches using MutS protein isolated from E. coli. MutS is a biological sensor and a locator of DNA base-pair mismatches. It binds specifically to a mismatched DNA base pair and initiates a process of DNA repair. To test the possibility of visually detecting mismatched base pairs by atomic force microscopy, we prepared DNA templates approximately 500 bp in length consisting of a single or multiple base-pair mismatches. We demonstrate that MutS binding sites on individual DNA molecules were readily detectable by atomic force microscopy and that the observed positions were in good agreement with the predicted sites of base-pair mismatches at a few-nanometer resolution. The technique described here is rapid and sensitive and is expected to be useful in screening mutations and DNA polymorphisms. 相似文献
13.
Detection limits of an internal-reflection sensor for the optical beam deflection method 总被引:1,自引:0,他引:1
The theoretical detection limit on angle deflection measurement when the quasi-critical internal-reflection method is used is calculated and compared with the more common method of using a bicell position-sensitive detector. Simple formulas for the sensitivity and resolution when the system is shot noise limited are given. It is shown that, even though the bicell detector is potentially much more sensitive for wide and well collimated beams, under typical laboratory restrictions, the internal reflection method may be more sensitive and have better resolution. It is argued that the internal-reflection method may be a tool in developing compact sensors based on the optical beam deflection method. 相似文献
14.
Direct deflection method for determining refractive-index profiles of polymer optical fiber preforms
We present a method for determining the refractive-index profile of polymer optical fiber preforms through a direct-deflection measurement. The method is simple to use, compact, and has good resolution. The profile is obtained from the deflection data by numerically integrating the differential-ray equation for a radial refractive-index gradient. Corrections for topographical deviations are also discussed. Results for both graded-index and step-index fibers are presented. 相似文献
15.
We investigate an internal-transmission method for measuring microdeflections of an optical beam as a potential tool for the development of new compact and stable optical sensors. We calculate the detection limits of the internal-transmission method when an ideal coherent optical source and an ideal quasi-monochromatic thermallike source are used. The proposed method is compared with an internal-reflection method previously studied. It is found theoretically and verified experimentally that the transmission method may have better resolution than the reflection method. We also compare the calculated sensitivity as a function of the angle of incidence with experimental results for both methods. 相似文献
16.
Typing of multiple single-nucleotide polymorphisms by a microsphere-based rolling circle amplification assay 总被引:1,自引:0,他引:1
The combination of suspension array with rolling circle amplification can lead to a sensitive and specific assay for single-nucleotide polymorphisms (SNPs) detection, as demonstrated in this study. A circular template generated by ligation upon the recognition of a point mutation on DNA targets was amplified isothermally by the Phi29 polymerase on microspheres. The elongation products were labeled with fluorochrome-tagged probes and detected in a flow cytometer, indicating the mutation occurrence. As low as 10 amol of mutated strands was detected by this assay, and positive mutation detection was achieved with a wild-type to mutant ratio of 10 000:1, which could be attributed to the high amplification efficiency of Phi29, the high binding capacity of the microspheres, and the remarkable precision of DNA ligase in distinguishing mismatched bases at the ligation site. A novel design of using two differently labeled detection probes on the same microsphere to target both the wild-type and mutant samples allowed parallel determination of the heterozygosity for two SNPs (K-ras G12C and TP53 R273H) in PCR amplicons prepared from human genomic DNA extracts. This ability lays the groundwork for further enhancing the assay throughput by using multiple fluorophores and microspheres with distinct properties. 相似文献
17.
The direct optical digital detection of analog mechanical motion of a diaphragm is described both experimentally and theoretically. The conversion is made by a Michelson interferometer which detects deformation of the diaphragm caused by acoustic pressure. Theoretical calculation shows that the maximum resolution is strongly dependent on the detector width, it becomes 9 bits when a single-mode optical fiber is used as the detector. An 8-bit A-D conversion is experimentally obtained using a Michelson interferometer constructed with a He-Ne laser, a 2.54-cm (1-in.) diam diaphragm, and a detector of 50-microm diam multimode optical fibers. 相似文献
18.
An optical sensing probe has been developed by taking advantage of the polypyrrole (PPy) chromophore. The absorbance of the oxidation product of pyrrole, i.e., solubilized PPy colloids, is shown to be directly proportional to the concentration of hydrogen peroxide, when H2O2 is used as an oxidant for pyrrole in the presence of a surfactant, sodium dodecyl sulfate, and Fe(II) in a slightly acidic aqueous solution. Based on this result, a new optical sensing method has been developed for the determination of H2O2. The probe has also been applied to optical sensing of ethanol by biocatalyzed generation of H2O2 in the presence of O2, ethanol, and alcohol oxidase. The novel methodology is expected to provide a general protocol for the determination of H2O2 as well as for numerous other oxidase-based reactions producing H2O2 as a product. 相似文献
19.
A new nanoparticle-based chemiluminescent (CL) method has been developed for the ultrasensitive detection of DNA hybridization. The assay relies on a sandwich-type DNA hybridization in which the DNA targets are first hybridized to the captured oligonucleotide probes immobilized on polystyrene microwells and then the silver nanoparticles modified with alkylthiol-capped oligonucleotides are used as probes to monitor the presence of the specific target DNA. After being anchored on the hybrids, silver nanoparticles are dissolved to Ag+ in HNO3 solution and sensitively determined by a coupling CL reaction system (Ag+-Mn2+-K2S2O8-H3PO4-luminol). The combination of the remarkable sensitivity of the CL method with the large number of Ag+ released from each hybrid allows the detection of specific sequence DNA targets at levels as low as 5 fM. The sensitivity increases 6 orders of magnitude greater than that of the gold nanoparticle-based colorimetric method and is comparable to that of surface-enhanced Raman spectroscopy, which is one of the most sensitive detection approaches available to the nanoparticle-based detection for DNA hybridization. Moreover, the perfectly complementary DNA targets and the single-base mismatched DNA strands can be evidently differentiated through controlling the temperature, which indicates that the proposed CL assay offers great promise for single-nucleotide polymorphism analysis. 相似文献
20.
Microelectrode arrays having eight 10-microm-diameter gold microelectrodes arranged on a gold-covered Si chip were designed and characterized. The chips prove useful for the detection of single-nucleotide mismatches in unlabeled and prehybridized DNA by electrochemical impedance spectroscopy. 相似文献