首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 171 毫秒
1.
针对在光电跟踪伺服系统中常规差分测速度和测加速度高频时带来的误差放大问题,文中提出了将非线性跟踪微分器应用于测速测加速度环节的方法,利用位置传感器测出的位置信号,能快速准确的估计出速度和加速度信息.该方法不基于对象模型,计算量小,简便且易于实现,同时也无需额外的硬件开销.文中在进行大量数值仿真分析的同时,进行了实验验证.结果表明,伺服跟踪系统在低速(0.03°/s)情况下,速度和加速度的波动方差分别降低了7.56"/s和11.52"/s2.并且在低速跟踪时平稳无抖动.文中方法有效可行,为今后伺服系统速度闭环提供了新的思路.  相似文献   

2.
为降低噪声干扰、低频误差及信号漂移等对加速度信号积分位移信号还原度的影响,提出了一种采用自适应噪声的完备集合经验模态分解(CEEMDAN)算法和小波阈值去噪对加速度信号进行预处理,时域积分结合频域积分的位移信号还原方法.通过仿真分析及试验测试结果对比,该方法能够有效降低采集的加速度信号中存在的高低频误差影响.误差评价指...  相似文献   

3.
利用多个加速度传感器组成传感器阵列进行六自由度振动测试,但该方法振动线速度、角速度等参数是通过对加速度信号进行积分方法获得的,数值积分随时间增长的积累误差迅速增大,限制传感器阵列长时间测量。介绍传感器阵列测试方法,对数值积分误差进行分析,并提出用基于经验模态分解(EMD)的理论数据处理方法解决上述问题,通过仿真和实验验证了该方法的有效性。  相似文献   

4.
凸轮机构的反求设计   总被引:1,自引:0,他引:1  
介绍了胶印机离合压凸轮机构反求设计时剔除制造误差的数据分析方法.由凸轮实际廓线测得离散数据,根据凸轮设计理论推导出凸轮理论廓线值.应用数值计算方法,计算凸轮从动件的角位移及类加速度值.将类加速度与期望类加速度值进行比较,得出类加速度误差,进而求得角位移误差.剔除角位移误差后的数据更接近原始设计数据.  相似文献   

5.
抖动作为衡量时钟信号质量的重要指标,对电子系统的性能具有重要意义。数据采集系统要获得良好的信噪比,就必须要有高性能低抖动的时钟信号。本文应用相位噪声与抖动的关系,同时结合相位噪声Leeson模型,研究了时钟信号发生电路的抖动及相位噪声特性,分析了电路有载品质因数QL对抖动的影响,并给出了电路主要器件与抖动关系的显性表达式。以一种100 MHz低抖动时钟信号发生电路为例,进行了理论分析、仿真和实验验证,并将其应用到2.5 GHz采样时钟信号发生电路中进行了对比测试。结果表明,提高电路的有载品质因素QL可以明显改善其抖动及相位噪声特性。  相似文献   

6.
多声道超声流量计在弯管段安装的适应性研究   总被引:4,自引:2,他引:2  
针对在不具备直管段安装条件时,如何合理地选取多声道超声流量计的声道数量、测量断面及安装角度,本文从数学建模、误差分析、数值计算仿真与试验分析等方面,对DN400多声道超声流量计在弯管中的适应性进行了综合研究.利用高斯-雅克比数值积分法,给出了试验数据处理与数值仿真的数学模型,并分析了模型误差及横流的影响,提出利用双断面测量可减小横流的影响,并在数值仿真和试验中得到了验证.通过对声道数量、测量断面、安装角度进行数值仿真和试验表明,安装角度对低流速测量影响显著,最佳安装角应为0°;高流速测量应选用双断面,可根据测量精度的要求选用8声道或18声道.仿真结果与试验结果得到了很好的吻合,为进一步指导试验奠定了理论基础.  相似文献   

7.
为了消除闭锁效应,激光陀螺常采用机械抖动偏频方案,利用压电陶瓷驱动器来驱动谐振腔绕垂直于环路平面的轴线快速来同转动.在考虑压电陶瓷驱动器的情况下建立了抖动结构的理论模型,对抖动频率进行了理论分析,给出了抖动频率的解析解.建立了机抖激光陀螺的有限元仿真模型,进行了模态分析,通过与扫频试验结果对比,理论分析计算误差为5.68%,有限元分析计算误差为1.04%,验证了模型的合理性和精确性.分析了压电陶瓷驱动器参数(厚度、宽度)对谐振频率的影响规律,为机抖激光陀螺的研发和设计提供参考依据.  相似文献   

8.
随着北斗卫星导航系统的全球化,基于软件定义无线电的北斗接收机在北斗导航定位中的应用越来越广泛。但是北斗接收机在实时动态差分等高精度测量应用场景下,其基带采样ADC受到采样时钟抖动影响,再叠加固有的量化噪声和热噪声,对北斗信号的扩频测距精度产生不可忽略的影响。本文首先针对北斗公开的B1I、B1C、B2I、B2a和B3I 5种全球信号,描述了ADC采样中时钟抖动、量化噪声和热噪声等采样噪声的数学模型,提出了影响测距的信噪比综合公式,再通过载噪比进而得出测距误差的一般表达式,并给出了高精度测量要求下不同参数选择的工程化定量分析方法,然后针对不同参数对北斗信号测距误差的影响进行了仿真分析,仿真结果表明,在0. 6 cm的测距误差目标下,要求时钟抖动不大于45 ps,接收机中心频率不大于80 MHz,带宽不小于25 MHz,量化位数不少于7位,载噪比不小于30 d B。最后,针对北斗B2I信号进行了实测实验,在时钟抖动为35 ps,接收机中心频率61. 38 MHz,带宽32 MHz,量化位数12位,载噪比67 d B时,解算的测距误差为0. 41 cm,验证了本文方法的有效性。  相似文献   

9.
设计了双弹头霍普金森杆用于精确标定高g值加速度计的动态线性参数。基于一维应力波传播理论和弹性波叠加原理,分析了双弹头霍普金森杆为不同尺寸时对获取所需激励加速度信号的影响。利用ANSYS/LS-DYNA有限元仿真软件对不同设计条件下双弹头霍普金森杆的冲击效果进行了仿真分析。通过对不同影响因素的对比,确定了结构参数,设计了直径为30mm,长度为1 200mm的双弹头霍普金森杆,即高量程加速度计动态线性校准系统。利用设计的双弹头霍普金森杆对高量程加速度计进行了动态线性校准和试验验证,结果显示加速度计动态线性误差在5%以内,证明了设计的装置可对高量程加速度计进行动态线性校准,校准结果基本满足冲击校准的要求。  相似文献   

10.
机械臂运动轨迹容易受到外界不确定因素的干扰,导致运动轨迹跟踪误差较大,振动现象较为严重,不能很好地满足机械臂的准确定位.建立了双关节机械臂模型简图,采用RBF(径向基函数)神经网络算法非线性积分滑模控制机械臂的运动轨迹.分析了RBF神经网络算法结构,推导了RBF神经网络算法非线性积分滑模控制方程式和在线补偿法则,引用李雅普诺夫函数证明机械臂控制系统的稳定性.采用Matlab软件对双关节机械臂运动轨迹跟踪误差进行仿真,并与PID控制系统的跟踪误差进行对比和分析.仿真误差曲线显示,机械臂运动轨迹在受到外界干扰因素的影响时,采用RBF神经网络算法非线性积分滑模控制方法,不仅跟踪误差较小,而且输入转矩波动幅度较小.机械臂末端采用RBF神经网络算法非线性积分滑模控制方法,提高了机械臂的定位精度,降低了抖动幅度.  相似文献   

11.
This paper presents a theoretical analysis of possible jitter impact in application of numeric criterion for fast measurement of frequency by coincidence principle. The primary goal is the generation of a signal containing a known amount of each jitter components. This signal was used for testing signals with regular pulse trains. Initially, jitter components are analyzed and modeled individually. Next, sequences for combining different kinds of jitter are modeled, simulated and evaluated. Jitter model simulation in Matlab is utilized to show the independence of frequency measurement results on the total jitter present in the reference and desired pulse trains independently. A good agreement between previously introduced theory of fast measurement of frequency and simulation in jitter presence is verified; these results allows to engineers use the numeric criterion for fast measurement of frequency in spite to interactions among jitter components in various applications for frequency domain sensors.  相似文献   

12.
为了实现齿轮传动误差的高精度测量,提出了齿轮传动误差信号处理的新架构。详细阐述了齿轮传动误差测量模型,分析了一般计数方法存在计算误差,进而提出采用高频时钟脉冲细分计数方法,提高了测量分辨率。完成了传动误差信号处理的仿真分析,最后在齿轮传动误差测量仪上进行了实验。实验结果表明该架构能够完成传动误差测量、提高了测量分辨率和测量精度。  相似文献   

13.
针对拼接干涉检测系统机械定位精度引起的各子孔径间的相对定位误差,提出了含定位误差补偿项的全局最优化拼接算法。介绍了该算法原理,从理论上分析了该算法拟合出的平移和旋转定位系数的精度。结合MetroPro和Matlab软件仿真模拟实验,分析了机械定位误差对拼接检测精度的影响。实验表明:拟合出的平移定位系数精度高于旋转定位系数精度,与理论分析一致;相对于一般算法,该算法对机械误差有较强的免疫力。在搭建的拼接检测装置上检测了口径为150mm的平面镜,结果显示:拼接结果与干涉仪直接检测的全口径相位残差的分布峰谷值(PV)为0.015 30λ,均方根值(RMS)为0.001 570λ,得到的结果十分接近,验证了该算法稳定可靠,能够合理有效地补偿机械精度引起的子孔径定位误差。  相似文献   

14.
针对现有高精度位移传感器栅距小导致对制造和使用环境要求苛刻的问题,提出一种采用高频时钟脉冲作为测量基准,可在大极距条件下实现高精度、大量程直线位移测量的变耦型时栅位移传感器。传感器通过在交变电磁场中改变励磁线圈和磁场拾取线圈的耦合状态建立以时间差反映位移变化的行波信号,实现精密位移测量。通过有限元分析软件对传感器进行了建模和仿真,根据仿真结果得到传感器仿真模型的测量误差,并对其进行了谐波分析;根据误差特点和变化规律对主要误差进行了溯源,并对模型进行了优化。根据优化模型制作了传感器实物,开展了验证实验。实验结果表明:根据仿真结果对传感器进行优化设计,在200 mm的测量范围内,传感器精度达到±500 nm,且系统成本低廉,极易制造。为时栅位移传感器在恶劣环境中的应用提供了解决方案和理论依据。  相似文献   

15.
由于加工圆度误差的影响,井下流量控制阀径向金属密封接触应力分布不均匀,从而影响密封性能。利用有限元方法研究具有圆度误差的径向金属密封唇部接触应力分布,并分析圆度误差对径向金属密封接触应力的影响;基于有限元分析结果提出径向金属密封接触应力分布的理论解析式,并进行误差分析。具有圆度误差的径向金属密封唇部接触应力分布的理论解与数值解相符,各参数引起的最大接触应力的平均相对误差约为10%。根据具有圆度误差的径向金属密封副接触应力的分布规律,提出合理的过盈量函数,修正了径向金属密封轴对称结构的悬臂梁模型的接触应力理论关系式,得出了圆度误差下的径向金属密封接触应力分布规律。研究结果为井下流量控制阀径向金属密封的设计提供了理论指导。  相似文献   

16.
采用链驱动的喷涂机器人易于实现本体的轻量化、末端高灵活度与正压防爆系统设计,从而满足家具、钢结构等一般涂装行业对喷涂机器人工作空间与腕部灵活度的要求,深入分析链驱动机器人的运动可靠性对喷涂质量和效率的提高具有重要意义。针对链驱动喷涂机器人的运动可靠性问题,采用一种基于试验与仿真联合分析的机器人末端轨迹精度可靠性分析方法。以旋量法为基础建立了喷涂机器人本体和喷枪的运动学模型,从工业机器人的操作臂性能和运动规律的角度出发,研究了喷涂机器人运动精度的影响因素。分析了链驱动喷涂机器人的优缺点和末端轨迹精度的影响状况,并结合机器人本体的运动学参数,建立了基于随机变量的喷涂机器人运动误差模型。通过试验结果的分析来确定影响喷涂机器人运动误差的随机变量的分布特征,从而对机器人末端轨迹精度的运动可靠性进行更加精确的仿真分析。最后,通过喷涂机器人工作平台对末端轨迹精度的运动误差进行试验验证并与传统的仿真分析方法进行对比,结果显示该分析方法更准确。研究成果为进一步分析喷涂机器人的机构优化、轨迹规划和漆膜质量提供试验基础和理论依据。  相似文献   

17.
分布式电源接入电网后会对系统网络损耗产生重要影响。分布式电源对网损的影响与分布式电源的并网位置、并网容量以及运行方式等密切相关。本文通过对10节点和33节点配电系统仿真及对仿真结果进行分析比较,研究了分布式电源以不同的容量、接入位置和功率因数接入电网后对配电网网损的影响。得出了相应的结论,为降低网损提供了一定的理论依据。  相似文献   

18.
齿轮系统传动误差的蒙特卡洛模拟分析   总被引:9,自引:0,他引:9  
针对齿轮系统中各项误差具有不同概率分布规律的特点 ,在指出现有理论和方法存在不足的基础上 ,提出了齿轮系统传动误差的蒙特卡洛模拟分析方法 ,为准确估计齿轮系统的传动精度提供了理论手段。对圆网制网机传动误差的分析结果表明 ,所提出的蒙特卡洛模拟方法不仅可以求出齿轮系统传动误差的分布情况 ,而且可以避免不必要的精度浪费 ,降低齿轮的制造成本  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号