首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 593 毫秒
1.
The hydrogenation and dehydrogenation behaviours of the YNi3.5Al0.5Mg compound were studied by in situ X-ray diffraction under hydrogen pressure and at room temperature. The changes of (i) the lattice parameters, (ii) the crystallite size and (iii) the lattice strain during the sorption process (i.e. along the PC isotherms) were studied. These results indicate that the crystallite size decreases by a factor of 2. The micro deformations increase at first and then tend to almost zero at the end of the sorption cycle. This behaviour is explained in terms of co-existence of the metal (i.e. αα phase) and metal hydride (i.e. ββ phase) phases. The change in crystallinity is consistent with the hydrogen induced amorphisation process existing in a lot of AB2 compounds. No anisotropic effects can be highlighted on this pseudo-AB2 compounds in contrary with what could be observed in AB5 compounds.  相似文献   

2.
The crystal structure and hydrogenation properties of Pr2Co7 with a Ce2Ni7-type structure were investigated by X-ray diffraction (XRD) and observation of the pressure–composition (PC) isotherms. The reversible hydrogen capacity reached 0.8 H/M, and two plateaus were observed in the absorption–desorption process. The two observed hydride phases, Pr2Co7H2.7 and Pr2Co7H7.2, were determined to have hexagonal (space group: P63/mmc) and orthorhombic (space group: Pbcn) crystal structures, respectively. The crystal structure transformed in the order of hexagonal with a Ce2Ni7-type structure (original alloy) → same Ce2Ni7-type structure (Pr2Co7H2.7) → orthorhombic (Pr2Co7H7.2). The crystal lattice of the Pr2Co7H2.7 underwent anisotropic expansion along the c-axis of the original alloy, whereas that of Pr2Co7H7.2 exhibited isotropic expansion. The full width at half maximum (FWHM) values for the original alloy and hydride phases during the hydrogen absorption–desorption process were evaluated based on the XRD data. The FWHM values for the main peaks decreased as the hydrogen content increased during the absorption process, indicating that the number of lattice defects did not increase upon hydrogenation. The plateau pressures during the absorption process of the second cycle were the same as those of the first cycle, which also suggests that there were no lattice defects.  相似文献   

3.
In this paper, we describe and discuss the synthesis, structural-microstructural and hydrogen storage behaviour of three AB2 type storage materials namely (a) ZrFe2, (b) Zr(Fe0.75V0.25)2 and (c) Zr(Fe0.5V0.5)2. These alloys were synthesied by radio frequency induction melting in argon atmosphere. X-ray diffraction and transmission electron microscope have been employed for structural and microstructural characterizations. The XRD study reveals that the lattice constants and the unit cell volume of ZrFe2, Zr (Fe0.75V0.25)2, Zr(Fe0.5V0.5)2 alloys, which has C14 type hexagonal Laves phase. The Surface morphology and elemental composition of these alloys were investigated by scanning electron microscope and energy dispersive X-ray analysis. The pressure composition isotherms of these alloys were investigated at room temperature and pressure ranges of 0–100 atm respectively, measured through a fully computerized PCI apparatus. As we increase the concentration of V (substituted for Fe), the total hydrogen storage capacities increased up to 1.45 wt%. This capacity is achieved in Zr(Fe0.5V0.5)2 alloy, while the reversible hydrogen storage capacity decreases due to the formation of a stable hydride phase. It has been found that the lattice constants increase with higher vanadium concentration. This is indicating that the majority of vanadium atoms reside in the B-site. The broader X-ray diffraction peaks observed in Zr(Fe0.5V0.5)2 alloy indicates a higher degree of disorder for alloys with the higher V-content. The yet another interesting feature observed in our present study is that the plateau pressure remains well below 1 atm for all the compositions.  相似文献   

4.
A modified Zr-coating process was introduced to improve the electrochemical performance of Li(Ni1/3Co1/3Mn1/3)O2. The ZrO2-coating was carried out on an intermediate, (Ni1/3Co1/3Mn1/3)(OH)2, rather than on Li(Ni1/3Co1/3Mn1/3)O2. After a heat treatment process, one part of the Zr covered the surface of Li(Ni1/3Co1/3Mn1/3)O2 in the form of a Li2ZrO3 coating layer, and the other part diffused into the crystal lattice of Li(Ni1/3Co1/3Mn1/3)O2. A decreasing gradient distribution in the concentration of Zr was detected from the surface to the bulk of Li(Ni1/3Co1/3Mn1/3)O2 by X-ray photoelectron spectra (XPS). Electrochemical tests indicated that the 1% (Zr/Ni + Co + Mn) ZrO2-modified Li(Ni1/3Co1/3Mn1/3)O2 prepared by this process showed better cyclability and rate capability than bare Li(Ni1/3Co1/3Mn1/3)O2. The result can be ascribed to the special effect of Zr in ZrO2-modified Li(Ni1/3Co1/3Mn1/3)O2. The surface coating layer of Li2ZrO3 improved the cycle performance, while the incorporation of Zr in the crystal lattice of Li(Ni1/3Co1/3Mn1/3)O2 modified the rate capability by increasing the lattice parameters. Electrochemical impedance spectra (EIS) results showed that the increase of charge transfer resistance during cycling was suppressed significantly by ZrO2 modification.  相似文献   

5.
The electrochemical reaction of lithium ion with Mg2FeH6, Mg2CoH5 and Mg2NiH4 complex hydrides prepared by reactive grinding is studied here. Plateaus at an average potential of 0.25 V, 0.24 V and 0.27 V corresponding to discharge capacities of 6.6, 5.5 and 3.6 Li can be achieved respectively for Mg2FeH6, Mg2CoH5 and Mg2NiH4. From in situ X-ray diffraction (XRD) characterizations of complex hydride based electrodes, dehydrogenation leads to a decrease of the intensities of the diffraction peaks suggesting a strong loss of crystallinity since formation of Mg and M (M = Fe, Co, Ni) peaks is not observed. 57Fe Mössbauer spectroscopy confirms the formation of nanoscale Fe or an amorphous Mg–Fe alloy during the decomposition of Mg2FeH6. Interestingly, lattice parameter variations suggest phase transitions in the Mg2NiH4 system involving the formation of low hydrogen content hydride Mg2NiH, while an increase of lattice parameters of Mg2CoH5 hydride could be attributed to the formation of a Mg2CoH5Lix solid solution compound up to x = 1.  相似文献   

6.
Hydrogenation properties and mechanical stability of pellets made starting from compressed ball-milled MgH2 powders mixed with catalysts (Nb2O5 and graphite) and a binding agent (aluminium powder) have been investigated. Structural characterization with X-ray diffraction and gas–solid reaction kinetic and thermodynamic tests with a Sievert's apparatus have been done on the samples up to 50 hydrogen absorption/desorption (a/d) cycles. The best cycling behaviour and mechanical strength stability have been observed for pellets of catalysed MgH2 powders added with 5 wt% aluminium annealed in vacuum at 450 °C before starting the a/d cycles. This mechanical stability to cycles has been attributed to the formation of a solid solution of aluminium in magnesium.  相似文献   

7.
Defect pyrochlore of composition KFe0.33W1.67O6 (KFeW) was synthesized by ethylene glycol assisted sol–gel method. The divalent tin doped KFeW (SnFeW) was prepared by ion exchange process using acidified SnCl2. Structural, morphological and optical properties of both materials were characterized by XRD, TGA, SEM-EDS, BET surface analyses and UV–visible diffuse reflectance techniques. The composition of tin-doped KFeW was obtained from EDS and TGA profiles. The cubic lattice parameter 'a' was obtained from Rietveld refinement program, Fullprof.2k, by refining the d- lines of the KFeW. The optical properties of Fe3+ were investigated. Substitution of K+ by Sn2+ led to an absorption shift onset to longer wavelengths. The photocatalytic activities of both samples were evaluated by photodegradation of methylene blue, photooxidation of cyclohexene and solar water-splitting reactions. The mechanistic degradation pathway of methylene blue (MB) was studied in the presence of both photocatalysts.  相似文献   

8.
The vertical Bridgman's method was employed to prepare a single crystal of the (2GaAs)0.5 (ZnSiAs2)0.5 system. The X-ray Laue method examination shows that the ingot prepared is a single crystal 2 cm long and 0.9 cm in diameter. The EPMA, AES, and ESCA analysis shows that the specimen was uniform and the composition stoichiometry is within the experimental error limit. The room temperature and temperature dependence X-ray powder diffraction were carried out to determine the lattice parameter, X-ray density and thermal expansion coefficient over temperature range 20°C–772°C.  相似文献   

9.
Pristine, equivalently and non-equivalently Al substituted LiNi0.5Mn0.5O2 materials were prepared by a combination of co-precipitation and solid-state reaction. As shown by XRD and XPS, lattice volume shrinkage of LiNi0.5(Mn0.45Al0.05)O2 was attributed to the presence of Ni in both 2+ and 3+, while the lattice volume expansion of Li(Ni0.45Al0.05)Mn0.5O2 was caused by lowering the average oxidation state of Mn. Electrochemical performance of LiNi0.5Mn0.5O2 materials can be greatly affected by the change of oxidation states of the transition metals by Al substitution. Non-equivalent substitution of Al for Ni leads to deteriorated discharge performance and cyclic stability due to the reduction of the electrochemical active Ni2+ and structure supported Mn4+, while an increase in the amount of Ni2+ in LiNi0.5(Mn0.45Al0.05)O2 brings obvious improvement of the electrochemical properties. EIS analyses of the electrode materials at pristine and charged states indicate that the poor electrochemical performance of Li(Ni0.45Al0.05)Mn0.5O2 material can be ascribed to the higher charge transfer resistance and surface film resistance, and the observed higher current rate capability of LiNi0.5(Mn0.45Al0.05)O2 can be understood due to the better charge transfer kinetics.  相似文献   

10.
Alkaline earth elements (Mg, Ca and Sr) on Ni-La2O3 catalyst have been investigated as promoters for syngas production from dry CO2 reforming of methane (DRM). The catalysis results of DRM performance at 600 °C show that the Sr-doped Ni-La2O3 catalyst not only yields the highest CH4 and CO2 conversions (∼78% and ∼60%) and highest H2 production (∼42% by vol.) but also has the lowest carbon deposition over the catalyst surface. The XPS, O2-TPD, H2-TPR and FTIR results show that the excellent performance over the Sr-doped Ni-La2O3 catalyst is attributed to the presence of a high amount of lattice oxygen surface species which promotes C-H activation in DRM reaction, resulting in high H2 production. Moreover, these surface oxygen species on the Ni-SDL catalyst can adsorb CO2 molecules to form bidentate carbonate species, which can then react with the surface carbon species formed during DRM, resulting in higher CO2 conversion and lower carbon formation.  相似文献   

11.
The electrochemical reactivity of the layered titanium hydrogeno phosphate Ti(HPO4)2·H2O versus lithium has been studied. Lithium intercalation occurs at ∼2.5 V with low polarization, leading to a new lithiated Ti(III) phase, LiTi(HPO4)2·H2O. Ti(HPO4)2·H2O exhibits a reversible capacity of 80 mAh g−1 in the voltage window 1.8–3.5 V at C/10 rate. The stable reversible capacity reveals that the presence of H2O lattice is not affecting the electrochemical reaction. The reversibility of the reaction is demonstrated by extracting lithium from LiTi(HPO4)2·H2O and the host structure is intact. The electrochemical behaviour of dehydrated phases Ti(HPO4)2 and TiP2O7 has also been investigated.  相似文献   

12.
The hydrogen generation reaction in the H2O/ZnO/MnFe2O4 system was studied to clarify the possibility of whether this reaction system can be used for the two-step water splitting to convert concentrated solar heat to chemical energy of H2. At 1273 K, the mixture of ZnO and MnFe2O4 reacted with water to generate H2 gas in 60% yield. X-ray diffractometry and chemical analysis showed that 48 mol% of MnII (divalent manganese ion) in the A-site of MnFe2O4 was substituted with ZnII (divalent zinc ion) and that chemical formula of the solid product was estimated to be Zn0.58MnII0.42MnIII0.39Fe1.61O4 (MnIII: trivalent manganese ion). Its lattice constant was smaller than that of the MnFe2O4 (one of the two starting materials). From the chemical composition, the reaction mechanism of the H2 generation with this system was discussed. Since the Mn ions in the product solid after the H2 generation reaction are oxidized to Mn3+, which can readily release the O2− ions as O2 gas around 1300 K, the two-step of H2 generation and O2 releasing seem to be cyclic.  相似文献   

13.
Layered LiMn0.4Ni0.4Co0.2O2 with the α-NaFeO2 structure was synthesized by the “mixed hydroxide” method, followed by a high temperature calcination at 800 °C giving a single phase material of surface area 5 m2 g−1. A combined X-ray/neutron diffraction Rietveld refinement showed that the transition metals in the 3b layer are randomly distributed at room temperature, and that only nickel migrates to the lithium layer and in this case 4.4%. Addition of excess lithium reduces the amount of nickel on the lithium sites. The magnetic susceptibilities of the compounds LiMnyNiyCo1−2yO2 (y = 0.5, 0.4, 0.333) follow the Curie–Weiss law above 100 K and are consistent with the presence of Ni2+, Mn4+ and Co3+ cations; their magnetization curves, measured at 5 K and showing a pronounced hysteresis, are also consistent with the nickel content on the lithium sites increasing with decreasing cobalt content. This material shows a stable capacity of 140–170 mA h g−1 for more than 90 cycles within the voltage window of 2.5–4.4 V. The layered rhombohedral structure is maintained as lithium is removed down to at least a lithium content of 0.05; the total volume change on cycling is under 2%. The nickel ions pin the lattice so that MO2 slab sliding to form the 1T structure cannot readily occur. The capability of aqueous acids to leach lithium from the lattice decreases with increasing nickel content in the lithium layer; however, the thermal stability of the delithiated compounds increases with cobalt content.  相似文献   

14.
In situ synchrotron diffraction experiments were performed to study the behaviour of the cathode material LiNi0.8Co0.2O2 at high cycle numbers. The battery-cell was cycled 140 times between 4.2 and 2.7 V. The initial cycle and several cycles at proceeded degradation of the cell were investigated. In between the cell was cycled ex situ. The evolution of the lattice parameters during cycling was determined for the different stages of degradation by means of Rietveld refinement. Comparing the initial cycle of the cell with the higher cycle numbers, the mechanism of lithium insertion/extraction does not change significantly. But, the range in which the lattice parameters change during one cycle becomes smaller. This can be attributed to interface layer formation and to slightly less lithium exchange in the same voltage window.  相似文献   

15.
One-dimensional (1D) Pt/TiO2 hybrid nanofibers (HNFs) with different concentrations of Pt were fabricated by a facile two-step synthesis route combining an electrospinning technique and calcination process. X-ray diffraction (XRD), scanning electron microscopy (SEM), and high-resolution transmission electron microscopy (HRTEM) results showed that the Pt nanoparticles (NPs) with the size of 5–10 nm were well dispersed in the TiO2 nanofibers (NFs). Further investigations from the UV–Vis diffuse reflectance (DR) and X-ray photoelectron spectroscopy (XPS) analysis revealed that some Pt ions were incorporated into the TiO2 lattice as Pt4+ state, which contributed to the visible light absorption of TiO2 NFs. Meanwhile, the Pt2+ ions existing on the surface of Pt NPs resulted in the formation of Pt–O–Ti bond at Pt NPs/TiO2 NFs interfaces that might serve as an effective channel for improving the charge transfer. The as-electrospun Pt/TiO2 HNFs exhibited remarkable activities for photocatalytic H2 evolution under visible light irradiation in the presence of l-ascorbic acid as the sacrificial agent. In particular, the optimal HNFs containing 1.0 at% Pt showed the H2 evolution rate of 2.91 μmol h−1 and apparent quantum efficiency of 0.04% at 420 nm by using only 5 mg of photocatalysts. The higher photocatalytic activity could be ascribed to the appropriate amount of Pt ions doping and excellent electron-sink effect of Pt NPs co-catalysts.  相似文献   

16.
Nanostructured MgH2-Ni/Nb2O5 nanocomposite was synthesized by high-energy mechanical alloying. The effect of MgH2 structure, i.e. crystallite size and lattice strain, and the presence of 0.5 mol% Ni and Nb2O5 on the hydrogen-desorption kinetics was investigated. It is shown that the dehydrogenation temperature of MgH2 decreases from 426 °C to 327 °C after 4 h mechanical alloying. Here, the average crystallite size and accumulated lattice strain are 20 nm and 0.9%, respectively. Further improvement in the hydrogen desorption is attained in the presence of Ni and Nb2O5, i.e. the dehydrogenation temperature of MgH2/Ni and MgH2/Nb2O5 is measured to be 230 °C and 220 °C, respectively. Meanwhile, the dehydrogenation starts at 200 °C in MgH2–Ni/Nb2O5 system, revealing synergetic effect of Ni and Nb2O5. The mechanism of the catalytic effect is presented.  相似文献   

17.
The structural changes of pristine and ZrO2-coated LiMn0.5Ni0.5O2 cathode materials were investigated by using in situ X-ray diffraction (XRD) during charging process. An obviously solid solution phase transition from a hexagonal structure (H1) to another hexagonal structure (H2) was observed during the charging process at a constant current of 0.3 mA in the potential range of 2.5–5.7 V. The second hexagonal structure has a shorter a-axis and a longer c-axis before the crystal collapse. Before the structure collapses the c-axis length increases to maximum and then significantly decreases to 14.1 Å. The c-axis length of the pristine and ZrO2-coated LiMn0.5Ni0.5O2 increases to the maximum at the charge capacity of 119.2 and 180.9 mAh g−1, respectively. It can be concluded that the ZrO2 coating can strongly stabilize the crystal structure of the LiMn0.5Ni0.5O2 compound from the comparison of the lattice parameter variations between the pristine and the ZrO2-coated LiMn0.5Ni0.5O2 compounds upon charge. The potential fluctuation resulting from the decomposition of electrolytes starts at the charge capacity of around 200 and 260 mAh g−1 for the pristine and ZrO2-coated LiMn0.5Ni0.5O2, respectively. It suggests that the ZrO2 coating layer can impede the reaction between the cathode material and electrolyte.  相似文献   

18.
The aqueous-phase reforming (APR) of n-butanol (n-BuOH) over Ni(20 wt%) loaded Al2O3 and CeO2 catalysts has been studied in this paper. Over 100 h of run time, the Ni/Al2O3 catalyst showed significant deactivation compared to the Ni/CeO2 catalyst, both in terms of production rates and the selectivity to H2 and CO2. The Ni/CeO2 catalyst demonstrated higher selectivity for H2 and CO2, lower selectivity to alkanes, and a lower amount of C in the liquid phase compared to the Ni/Al2O3 sample. For the Ni/Al2O3 catalyst, the selectivity to CO increased with temperature, while the Ni/CeO2 catalyst produced no CO. For the Ni/CeO2 catalyst, the activation energies for H2 and CO2 production were 146 and 169 kJ mol−1, while for the Ni/Al2O3 catalyst these activation energies were 158 and 175 kJ mol−1, respectively. The difference of the active metal dispersion on Al2O3 and CeO2 supports, as measured from H2-pulse chemisorption was not significant. This indicates deposition of carbon on the catalyst as a likely cause of lower activity of the Ni/Al2O3 catalyst. It is unlikely that carbon would build up on the Ni/CeO2 catalyst due to higher oxygen mobility in the Ni doped non-stoichiometric CeO2 lattice. Based on the products formed, the proposed primary reaction pathway is the dehydrogenation of n-BuOH to butaldehyde followed by decarbonylation to propane. The propane then partially breaks down to hydrogen and carbon monoxide through steam reforming, while CO converts to CO2 mostly through water gas shift. Ethane and methane are formed via Fischer-Tropsch reactions of CO/CO2 with H2.  相似文献   

19.
Glass-ceramic and glass Li2S-GeSe2-P2S5 electrolytes were prepared by a single step ball milling (SSBM) process. Various compositions of Li4−xGe1−xPxS2(1+x)Se2(1−x) with/without heat treatment (HT) from x = 0.55 to x = 1.00 were systematically investigated. Structural analysis by X-ray diffraction (XRD) showed gradual increase of the lattice constant followed by significant phase change with increasing GeSe2. HT also affected the crystallinity. Incorporation of GeSe2 in Li2S-P2S5 kept high conductivity with a maximum value of 1.4 × 10−3 S cm−1 at room temperature for x = 0.95 in Li4−xGe1−xPxS2(1+x)Se2(1−x) without HT. All-solid-state LiCoO2/Li cells using Li2S-GeSe2-P2S5 as solid-state electrolytes (SE) were tested by constant-current constant-voltage (CCCV) charge-discharge cycling at a current density of 50 μA cm−2 between 2.5 and 4.3 V (vs. Li/Li+). In spite of the extremely high conductivity of the SE, LiCoO2/Li cells showed a large irreversible reaction especially during the first charging cycle. LiCoO2 with SEs heat-treated at elevated temperature exhibited a capacity over 100 mAh g−1 at the second cycle and consistently improved cycle retention, which is believed to be due to the better interfacial stability.  相似文献   

20.
In this study, nano-crystalline LiCoO2 was coated onto the surface of Li1.05Ni0.35Co0.25Mn0.4O2 powders via sol–gel method. The influence of the coating on the electrochemical behavior of Li1.05Ni0.35Co0.25Mn0.4O2 is discussed. The surface morphology was characterized by transmission electron microscopy (TEM). Nano-crystallized LiCoO2 was clearly observed on the surfaces of Li1.05Ni0.35Co0.25Mn0.4O2. The phase and structural changes of the cathode materials before and after coating were revealed by X-ray diffraction spectroscopy (XRD). It was found that LiCoO2 coated Li1.05Ni0.35Co0.25Mn0.4O2 cathode material exhibited distinct surface morphology and lattice constants. Cyclic voltammetry (2.8–4.6 V versus Li/Li+) shows that the characteristic voltage transitions on cycling exhibited by the uncoated material are suppressed by the 7 wt.% LiCoO2 coating. This behavior implies that LiCoO2 inhibits structural change of Li1.05Ni0.35Co0.25Mn0.4O2 or reaction with the electrolyte on cycling. In addition, the LiCoO2 coating on Li1.05Ni0.35Co0.25Mn0.4O2 significantly improves the rate capability over the range 0.1–4.0C. Comparative data for the coated and uncoated materials are presented and discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号