首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In this work, a novel approach related to the production of hydrogen using a polymer electrolyte membrane electrolysis powered by a renewable hybrid system is proposed. The investigation is carried out by establishing energy balances in the different components constituting the combined renewable system. A mathematical model to predict the production of electricity and hydrogen is proposed. The discrepancies between the numerical results and those from the literature review do not exceed 7%. The results show that the overall efficiency and the capacity factor of the combined renewable system without thermal storage are 20 and 34%, respectively. The levelized cost of hydrogen also is 6.86 US$/kg. The effect of certain physical parameters such as optical efficiency, water electrolysis temperature, unit electrolysis capital cost and solar multiple on the performance of the combined system is investigated. The results show that the performance of hydrogen production is optimal when the solar installation is three times oversized. The results also show that the levelized cost of hydrogen for the optimal sized is 4.07 US$/kg. Finally, the proposed combined system can produce low cost hydrogen and compete with hybrid sulfur thermochemical cycles, conventional photovoltaic installations, concentrated photovoltaic thermal systems and wind farms developed in all regions of the world.  相似文献   

2.
Various methods of making hydrogen from water have been proposed, but at the present time the only practical way to make hydrogen from water without fossil fuel is electrolysis. The development of a new, advanced, water electrolyser has become necessary for use in hydrogen energy systems and in electricity storage systems. All the new possible electrolysis processes, suitable for large-scale plants, are being analysed, in view of their combination with solar electricity source. A study of system interactions between large-scale photovoltaic plants, for electrical energy supply, and water electrolysis, is carried out. The subsystems examined include power conditioning, control and loads, as they are going to operate. Water electrolysis systems have no doubt been improved considerably and are expected to become the principal means to produce a large amount of hydrogen in the coming hydrogen economy age. Thus, the present paper treats the subject of hydrogen energy production from direct solar energy conversion facilities located on the earth's oceans and lakes. Electrolysis interface is shown to be conveniently adapted to direct solar energy conversion, depending on technical and economical feasibility aspects as they emerge from the research phases. The intrinsic requirement for relatively immense solar collection areas for large-scale central conversion facilities, with widely variable electricity charges, is given. The operation of electrolysis and photovoltaic array combination is verified at different insolation levels. Solar cell arrays and electrolysers are giving the expected results during continuously variable solar energy inputs. Future markets will turn more and more towards larger scale systems powering significantly bigger loads, ranging from hundreds of kW to several MW in size. Detailed design and close attention to subsystem engineering in the development of high performance, high efficiency photovoltaic power plants, are carried out. An overall design of a 50 MWp photovoltaic central station for electricity and hydrogen co-generation is finally discussed.  相似文献   

3.
Utilization of solar energy on a large scale requires balancing the daily and seasonal fluctuations of the primary energy supply to the energy demand. The conversion of solar energy into hydrogen offers the possibility of levelling the gap in time and location, quality and quantity between energy demand and supply. Solar hydrogen production via the photovoltaic/electrolysis system has a high potential for technical feasibility. The purpose of this paper is to present practical experience and experimental results of a 100 W system consisting of a polycrystalline Si photovoltaic generator, a SPE electrolyser and a power-conditioning unit. The paper focuses on specifications, dynamic behavior, efficiency, and performance of the power-conditioning unit. The experiments indicate a short relaxation time between solar radiation variation and the system parameters. The overall efficiency of power conditioning is above 92% under all operating conditions.  相似文献   

4.
Renewable energy sources such as wind turbines and solar photovoltaic are energy sources that cannot generate continuous electric power. The seasonal storage of solar or wind energy in the form of hydrogen can provide the basis for a completely renewable energy system. In this way, water electrolysis is a convenient method for converting electrical energy into a chemical form. The power required for hydrogen generation can be supplied through a photovoltaic array. Hydrogen can be stored as metal hydrides and can be converted back into electricity using a fuel cell. The elements of these systems, i.e. the photovoltaic array, electrolyzer, fuel cell and hydrogen storage system in the form of metal hydrides, need a control and monitoring system for optimal operation. This work has been performed within a Research and Development contract on Hydrogen Production granted by Solar Iniciativas Tecnológicas, S.L. (SITEC), to the Politechnic University of Valencia and to the AIJU, and deals with the development of a system to control and monitor the operation parameters of an electrolyzer and a metal hydride storage system that allow to get a continuous production of hydrogen.  相似文献   

5.
Hydrogen, which can be produced by water electrolysis, can play an important role as an alternative to conventional fuels. It is regarded as a potential future energy carrier. Photovoltaic arrays can be used in supplying the water electrolysis systems by their energy requirements. The use of photovoltaic energy in such systems is very suitable where the solar hydrogen energy systems are considered one of the cleanest hydrogen production technologies, where the hydrogen is obtained from sunlight by directly connecting the photovoltaic arrays and the hydrogen generator. This paper presents a small PV power system for hydrogen production using the photovoltaic module connected to the hydrogen electrolyzer with and without maximum power point tracker. The experimental results developed good results for hydrogen production flow rates, in the case of using maximum power point tracker with respect to the directly connected electrolyzer to the photovoltaic modules.  相似文献   

6.
Solar energy is going to play a crucial role in the future energy scenario of the world that conducts interests to solar-to-hydrogen as a means of achieving a clean energy carrier. Hydrogen is a sustainable energy carrier, capable of substituting fossil fuels and decreasing carbon dioxide (CO2) emission to save the world from global warming. Hydrogen production from ubiquitous sustainable solar energy and an abundantly available water is an environmentally friendly solution for globally increasing energy demands and ensures long-term energy security. Among various solar hydrogen production routes, this study concentrates on solar thermolysis, solar thermal hydrogen via electrolysis, thermochemical water splitting, fossil fuels decarbonization, and photovoltaic-based hydrogen production with special focus on the concentrated photovoltaic (CPV) system. Energy management and thermodynamic analysis of CPV-based hydrogen production as the near-term sustainable option are developed. The capability of three electrolysis systems including alkaline water electrolysis (AWE), polymer electrolyte membrane electrolysis, and solid oxide electrolysis for coupling to solar systems for H2 production is discussed. Since the cost of solar hydrogen has a very large range because of the various employed technologies, the challenges, pros and cons of the different methods, and the commercialization processes are also noticed. Among three electrolysis technologies considered for postulated solar hydrogen economy, AWE is found the most mature to integrate with the CPV system. Although substantial progresses have been made in solar hydrogen production technologies, the review indicates that these systems require further maturation to emulate the produced grid-based hydrogen.  相似文献   

7.
采用太阳能驱动电解水制氢是实现将太阳能转换为氢能来存储的最佳方式。该文提出一种采用光伏、光热协同驱动固体氧化物电解池(SOEC)进行高温蒸汽电解的制氢系统。建立各子系统数学模型,选取北京地区夏至日气象参数,分析太阳辐照度对制氢系统的性能影响,最后对整个系统进行能量及火用分析。结果表明,电流密度和温度是影响SOEC工作的重要因素。在电流密度较大的情况下升高温度,将有利于提高电解效率。耦合太阳能后系统最大能量及火用效率分别达到19.1%和20.3%。火用分析结果表明系统最大有用功损失发生在光电转换过程,火用损比例为87%。提升光电效率,将成为提高太阳能-氢能转换效率的关键。  相似文献   

8.
We present the results of an analysis of the performance of a photovoltaic array that complement the power output of a wind turbine generator in a stand-alone renewable energy system based on hydrogen production for long-term energy storage. The procedure for estimating hourly solar radiation, for a clear sunny day, from the daily average solar insolation is also given. The photovoltaic array power output and its effective contribution to the load as well as to the energy storage have been determined by using the solar radiation usability concept. The excess and deficit of electrical energy produced from the renewable energy sources, with respect to the load, govern the effective energy management of the system and dictate the operation of an electrolyser and a fuel cell generator. This performance analysis is necessary to determine the effective contribution from the photovoltaic array and the wind turbine generator and their contribution to the load as well as for energy storage.  相似文献   

9.
Hydrogen production from renewable energies is a key part in the energy transition to realize a sustainable energy economy for both developed and developing nations. For Algeria, successful energy transition toward a hydrogen economy will require the establishment of its potential. This study was conducted to estimate the potential for producing hydrogen from renewable resources in Algeria. The renewable energies considered are: solar photovoltaic and wind. To accomplish this objective, first, we analyzed renewable resource data both statistically and graphically using Geographical Information System (GIS), a computer-based information system utilized to create and visualize the spatial distribution of the geographic information. Then, the study will evaluate the availability of renewable electricity production potential from these key renewable resources. The potential for the hydrogen production, via the electrolysis process with wind and solar photovoltaic electricity, is described with maps showing it per unit area in each region. Finally, the results of the estimated hydrogen potential from both resources for each region are compared and significant conclusions are drawn.  相似文献   

10.
The use of renewable energy and more particularly solar energy in hydrogen production is considered the most viable and the most environment protective. Electricity is required for water electrolysis to produce hydrogen. As photovoltaic modules enable the direct conversion of solar energy into electricity, photovoltaic systems are then the most indicated systems for this task.  相似文献   

11.
Hydrogen is considered as the most promising energy carrier for providing a clean, reliable and sustainable energy system. It can be produced from a diverse array of potential feed stocks including water, fossil fuels and organic matter. Electrolysis is the best option for producing hydrogen very quickly and conveniently. Water electrolysis as a source of hydrogen production has recently gained much attention since it can produce high purity hydrogen and can be compatible with renewable energies. Besides the water electrolysis, aqueous methanol electrolysis has been reported in several studies. The aqueous methanol electrolysis proceeds at much lower voltage than that with the water electrolysis. As a result of the substantially lower operating voltage, the energy efficiency for methanol electrolysis can be higher than that for water electrolysis. In this paper, we are interesting to methanol electrolysis in order to produce hydrogen. The relation linking hydrogen production rate to the power needed to electrolyse a unit volume of aqueous methanol solution has been determined. Using this relation, the potential of hydrogen from aqueous methanol solution using a PV solar as the energy system has been evaluated for different locations in Algeria.  相似文献   

12.
In this study, the hydrogen production performance of a reactor assisted by a solar pond by photoelectrochemical method is examined conceptually. The main components of the new integrated system are a solar pond, a photovoltaic panel (PV) and a hybrid chlor-alkali reactor which consists of a semiconductor anot, photocathode and cation exchange membrane. The proposed system produces hydrogen via water splitting reaction and also yields the by products namely chlorine and sodium hydroxide while consumes saturated NaCl solution and pure water. In order to increase the efficiency of the reactor, the saturated hot NaCl solution at the heat storage zone (HSZ) of the solar pond is transferred to the anot section and the heated pure water by heat exchanger in the HSZ is transferred to cathode section. The photoelectrode releases electrons for hydrogen production with diminishing the power requirement from the PV panel that is used as a source of electrical energy for the electrolysis. The results confirm that the thermal performance of the solar pond plays a key role on the hydrogen production efficiency of the reactor.  相似文献   

13.
Hydrogen used as an energy carrier and chemical element can be produced by several processes such as gasification of coal and biomass, steam reforming of fossil fuel and electrolysis of water. Each of these methods has its own advantage and disadvantage. Electrolysis process is seen as the best option for quick hydrogen production. Hydrogen generation by methanol electrolysis process (MEP) gained much attention since it guarantees high purity gas and can be compatible with renewable energies. Furthermore, due to its very low theoretical potential (0.02 V), MEP can save more than 65% of electrical energy required to produce 1 kg of hydrogen compared to water electrolysis process (WEP). Electrolytic hydrogen production using solar photovoltaic (PV) energy is positioned to become as one of the preferred options due to the harmful environmental impacts of widely used methane steam reforming process and also since the prices of PV modules are more competitive.In this paper, hydrogen production by MEP using PV energy is investigated. A design of an off grid PV/battery/MethElec system is proposed. Mathematical models of each component of the system are presented. Semi-empirical relationship between hydrogen production rate and power consumption at 80 °C and 4 M concentration is developed. Optimal power and hydrogen management strategy (PHMS) is designed to achieve high system efficiency and safe operation. Case studies are carried out on two tilts of PV array: horizontal and tilted at 36° using measured meteorological data of solar irradiation and ambient temperature of Algiers site. Simulation results reveal great opportunities of hydrogen production using MEP compared to the WEP with 22.36 g/m2 d and 24.38 g/m2 d of hydrogen when using system with horizontal and tilted PV array position, respectively.  相似文献   

14.
Processes to produce hydrogen from solar photovoltaic (PV)-powered water electrolysis using solid polymer electrolysis (SPE) are reported. An alternative control of maximum power point tracking (MPPT) in the PV-SPE system based on the maximum current searching methods has been designed and implemented.Based on the characteristics of voltage–current and theoretical analysis of SPE, it can be shown that the tracking of the maximum current output of DC–DC converter in SPE side will track the MPPT of photovoltaic panel simultaneously.This method uses a proportional integrator controller to control the duty factor of DC–DC converter with pulse-width modulator (PWM).The MPPT performance and hydrogen production performance of this method have been evaluated and discussed based on the results of the experiment.  相似文献   

15.
An experimental study on small-scale for solar hydrogen production system via a Proton Exchange Membrane electrolysis under a desert climatic condition in Ouargla region (South-East of Algeria) has been carried out, the target of this study has been first to evaluate hydrogen production by water analysis and to store the solar energy which has had the form of a hydride-metal hydrogen, after that, to investigate the performance of sophisticated commercial electrolyser (HG-60)powered by photovoltaic panels via the Power Management Unit (PMU) as a power conditioner, this paper has also a mathematical models based on real-time experiments were used to simulate both the photovoltaic system and PEM electrolyser work, along with attempting to direct linking strategy with the same experimental components of photovoltaic panels and commercial electrolyser, it was found through this study, the addition of the number of commercial electrolyser with the bank of four HG-60 stacks in series. More effective considering the improving voltage matching, with power transfer efficiency reach to 99%, also another factor is the photovoltaic panels slope on panel output power and hydrogen productivity are theoretically examined, where the proper selection of optimal tilt angle has an importance for collecting the maximum hydrogen amount, eventually, over the experiment span, the real-amount of hydrogen vented over experiment course is around 92.54l.  相似文献   

16.
The solar cell which is employed for photovoltaic water electrolysis was fabricated by sputter-depositing a-Si:H on Si wafer. The electrolysis was conducted by connecting the series-connected solar cell externally to the hydrogen and the oxygen evolution electrodes. The conversion efficiency of 3.0% from the solar to hydrogen chemical energy was obtained and can be expected to be improved further by optimizing the system.  相似文献   

17.
A stand-alone power system based on a photovoltaic array and wind generators that stores the excessive energy from renewable energy sources (RES) in the form of hydrogen via water electrolysis for future use in a polymer electrolyte membrane (PEM) fuel cell is currently in operation at Neo Olvio of Xanthi, Greece. Efficient power management strategies (PMSs) for the system have been developed. The PMSs have been assessed on their capacity to meet the power load requirements through effective utilization of the electrolyzer and fuel cell under variable energy generation from RES (solar and wind). The evaluation of the PMS has been performed through simulated experiments with anticipated conditions over a typical four-month time period for the region of installation. The key decision factors for the PMSs are the level of the power provided by the RES and the state of charge (SOC) of the accumulator. Therefore, the operating policies for the hydrogen production via water electrolysis and the hydrogen consumption at the fuel cell depend on the excess or shortage of power from the RES and the level of SOC. A parametric sensitivity analysis investigates the influence of major operating variables for the PMSs such as the minimum SOC level and the operating characteristics of the electrolyzer and the fuel cell in the performance of the integrated system.  相似文献   

18.
Electricity generation via direct conversion of solar energy with zero carbon dioxide emission is essential from the aspect of energy supply security as well as from the aspect of environmental protection. Therefore, this paper presents a system for hydrogen production via water electrolysis using a 960 Wp solar power plant. The results obtained from the monitoring of photovoltaic modules mounted in pairs on a fixed, a single-axis and a dual-axis solar tracker were examined to determine if there is a possibility to couple them with an electrolyzer. Energy performance of each photovoltaic system was recorded and analyzed during a period of one year, and the data were monitored on an online software service. Estimated parameters, such as monthly solar irradiance, solar electricity production, optimal angle, monthly ambient temperature, and capacity factor were compared to the observed data. In order to get energy efficiency as high as possible, a novel alkaline electrolyzer of bipolar design was constructed. Its design and operating UI characteristic are described. The operating UI characteristics of photovoltaic modules were tuned to the electrolyzer operating UI characteristic to maximize production. The calculated hydrogen rate of production was 1.138 g per hour. During the study the system produced 1.234 MWh of energy, with calculated of 1.31 MWh , which could power 122 houses, and has offset 906 kg of carbon or an equivalent of 23 trees.  相似文献   

19.
This paper presents experimental results on the solar photovoltaic/PEM water electrolytes system performance in the Algerian Sahara regions. The first step is to present a photovoltaic module characterization under different conditions then validate the results by comparing the measured and calculated values. The main objective of this study is to develop a parametric study on the system performance (open-circuit voltage Voc, short circuit current Is, fill factor FF, maximum power Pm and the efficiency η) under hot climate conditions (Ouargla, Algeria). The ambient temperature effects and solar radiation on the solar PV performance characteristics were investigated using modeling and simulation analysis as well as experimental studies. The results show that the root mean squared error (RMSE) error of the currents and voltages and the mean bias error (MBE) are respectively 0.71%, 0.37% and 0.12%, 0.15%. The relative errors in the current and the voltage are respectively 0.83%–1.76%, and −0.58% to 0.83%. The second part provide some general characteristics concerning the indirect coupling of a lab scale proton exchange membrane (PEM) water electrolyser (HG60) powered by a set of our photovoltaic panels. Experimental results provide practical information for the modules and the electrolysis cells by the indirect coupling. The weather conditions effect on hydrogen production from the electrolyser was also investigated. The results showed a high hydrogen production of 284 L in one day for 08 h of running and the electrolyser power efficiency with solar PV system was between 18 and 40%.  相似文献   

20.
E. Bilgen   《Solar Energy》2004,77(1):47-55
A brief review shows that domestic production of hydrogen to fuel a car is feasible by using various means. Among these, the solar––photovoltaic electricity––electrolysis process seems to be the most practical if a renewable energy source is to be used. A simplified model has been developed to determine and optimize the thermal and economical performance of domestic photovoltaic-electrolyzer systems, either with fixed or sun tracking panels using annual total solar radiation on a horizontal surface and climatic data. Twelve locations in the United Sates from four climatic zones (tropical-sub tropical, dry, temperate, cool snow-forest) have been selected. Simulations have been carried out to produce data for hydrogen production for these various locations and the resulting data have been correlated to obtain hydrogen production in kg/kWp/year photovoltaic system as a function of total annual solar radiation on horizontal surface. The economical feasibility has been studied by taking the photovoltaic and electrolyzer systems' price as variable parameters. It is assumed that the necessary capital is 100% borrowed from a financial institution to pay back in monthly installments. It has been found that the hydrogen production with fixed photovoltaic panels varies from 26 to 42 kg/kWp/year and the cost from 25 to 268 $/GJ.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号