首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Literature thermodynamic values were experimentally confirmed for the Bunsen reaction producing H2SO4- and HI-rich phases. The sulfur-iodine water-splitting cycle, which uses the Bunsen reaction, has been improved by enriching the H2SO4 solution to 57% in a system involving the H2SO4 product and counter-current liquid I2 flow. The system was saturated with SO2. The decomposition of H2SO4 was investigated. Pt/SiO2, Pt/ZrO2, Pt/TiO2 and Pt/BaSO4 were all good catalysts for H2SO4 vapor decomposition to SO2 at high temperatures. Pt/Al2O3 was found to fail due to substrate sulfation. The importance of pressure to sulfation temperature is presented. A summary of catalyst studies for H2SO4 vapor decomposition compares catalyst effectiveness.  相似文献   

2.
热化学硫碘循环制氢是目前最有前景的制氢方法之一.为了提高产氢效率,众多学者对硫碘循环制氢系统进行了优化.对热化学硫碘循环制氢系统及其各单元研究进展进行了综述,讨论了本生反应中水和碘的用量问题、相分离问题,以及硫酸分解与碘化氢分解反应的反应环境和反应催化等问题,并对目前研究该循环的部分团队的实验结果和流程计算进行了对比.  相似文献   

3.
The faster and faster global growth of energy consumption generates serious problems on its supply and about the pollution that may result. Through the use of thermochemical cycles it is possible to use renewable energy to produce hydrogen from water, with the dual purpose of having an unlimited source of energy without producing greenhouse gases.  相似文献   

4.
A novel water-splitting thermochemical cycle for the production of green hydrogen is introduced. This three-step cycle is based on the thermal decomposition of sodium carbonate. In this work, thermodynamic equilibrium analysis of the cycle's constituent reactions is performed, for a variety of temperatures, pressures, and dilution ratios. Feasible temperature/pressure/dilution operating windows are identified for the cycle's reactions such that the maximum temperature of the cycle can be generated using current concentrated solar power (CSP) technologies, thus enabling the replacement of steam methane reforming (SMR) as the major industrial production method of hydrogen.  相似文献   

5.
Water thermolysis by means of the sodium manganese ferrite cycle for sustainable hydrogen production is reviewed, with particular focus on known elementary chemical processes taking place on solid substrates in the 600–800 °C temperature range. For the purpose, in-situ high temperature x-ray diffraction technique has been utilized to observe structural transformations produced by both temperature and reactive environment. The water-splitting reaction and the regeneration of initial reactants are described as multi-step reactions, in which the role of carbon dioxide, through carbonation and de-carbonation reactions is highlighted. A thermodynamic phase stability diagram is reported for the system MnFe2O4/Na2CO3/CO2.  相似文献   

6.
A bench-scale plant for producing hydrogen has been constructed on the basis of the thermochemical water-decomposition process, UT-3, consisting of Br, Ca and Fe compounds. This plant is named MASCOT (Model Apparatus for Studying Cyclic Operation in Tokyo) and is designed to be capable of producing 3 l/h of gaseous hydrogen at standard conditions. During several test runs, the continuous production of hydrogen was successfully achieved. In the present paper, the construction of the MASCOT plant is described.  相似文献   

7.
The development of clean hydrogen production methods is important for large-scale hydrogen production applications. The solar thermochemical water-splitting cycle is a promising method that uses the heat provided by solar collectors for clean, efficient, and large-scale hydrogen production. This review summarizes state-of-the-art concentrated solar thermal, thermal storage, and thermochemical water-splitting cycle technologies that can be used for system integration from the perspective of integrated design. Possible schemes for combining these three technologies are also presented. The key issues of the solar copper-chlorine (Cu–Cl) and sulfur-iodine (S–I) cycles, which are the most-studied cycles, have been summarized from system composition, operation strategy, thermal and economic performance, and multi-scenario applications. Moreover, existing design ideas, schemes, and performances of solar thermochemical water-splitting cycles are summarized. The energy efficiency of the solar thermochemical water-splitting cycle is 15–30%. The costs of the solar Cu–Cl and S–I hydrogen production systems are 1.63–9.47 $/kg H2 and 5.41–10.40 $/kg H2, respectively. This work also discusses the future challenges for system integration and offers an essential reference and guidance for building a clean, efficient, and large-scale hydrogen production system.  相似文献   

8.
An entropy production and efficiency analysis of the first reaction in the General Atomic sulfur-iodine thermochemical hydrogen production cycle has been carried out by simulating the reaction including the mixing of reactants and separation of the resulting phases. The reaction:
was simulated at 388 K, which is slightly above the melting point of I2. Analysis of only this reaction shows that the reaction should be run at 15–25% I2 reacted and the greatest excess of H2O which will produce two product phases. Actual operating conditions are however dependent on the total processing scheme. An entropy production and efficiency analysis along with economic factors for the entire process is necessary to obtain these conditions.  相似文献   

9.
10.
Water-splitting solar thermochemical cycles are important in meeting the challenges of global climate change and limited fossil fuels. However, solar radiation varies in availability, leading to unsteady state operation. We propose a solar receiver-reactor with integrated energy collection and storage. The reactor consists of a double-pipe heat exchanger placed at the focal line of a parabolic trough solar concentrator. Molten salt passes through the jacket, absorbing energy from the irradiated outer surface while driving the endothermic oxygen production step of the copper-chlorine water-splitting cycle in the reactor bore. Excess energy is stored in a thermal storage tank to buffer the reactor from changes in insolation. Dynamic simulation indicates that the reactor can sustain steady 100% conversion during 24/7 operation with a reasonable plant layout. The technology employed is extant and mature. This is important in view of the urgency to reduce dependency upon fossil fuels as primary energy sources.  相似文献   

11.
A new thermochemical cycle for H2 production based on CeO2/Ce2O3 oxides has been successfully demonstrated. It consists of two chemical steps: (1) reduction, 2CeO2 → Ce2O3 + 0.5O2; (2) hydrolysis, Ce2O3 + H2O → 2CeO2 + H2. The thermal reduction of Ce(IV) to Ce(III) (endothermic step) is performed in a solar reactor featuring a controlled inert atmosphere. The feasibility of this first step has been demonstrated and the operating conditions have been defined (T = 2000 °C, P = 100–200 mbar). The hydrogen generation step (water-splitting with Ce(III) oxide) is studied in a fixed bed reactor and the reaction is complete with a fast kinetic in the studied temperature range 400–600 °C. The recovered Ce(IV) oxide is then recycled in first step. In this process, water is the only material input and heat is the only energy input. The only outputs are hydrogen and oxygen, and these two gases are obtained in different steps avoiding a high temperature energy consuming gas-phase separation. Furthermore, pure hydrogen is produced (it is not contaminated by carbon products like CO, CO2), thus it can be used directly in fuel cells. The results have shown that the cerium oxide two-step thermochemical cycle is a promising process for hydrogen production.  相似文献   

12.
This paper proposes a novel two-step thermochemical cycle for hydrogen production from water using germanium oxide. The thermochemical cycle is herein referred to as KIER 4. KIER 4 consists of two reaction steps: the first is the decomposition of GeO2 to GeO at approximately 1400–1800 °C, the second is hydrogen production by hydrolysis of GeO below 700 °C. A 2nd-law analysis was performed on the KIER 4 cycle and a maximum exergy conversion efficiency was estimated at 34.6%. Thermodynamic analysis of GeO2 decomposition and hydrolysis of GeO confirmed the possibility of this cycle. To demonstrate the cycle, the thermal reduction of GeO2 was performed in a TGA with mass-spectroscopy. Results suggest GeO2 decomposition and oxygen gas evolution. To confirm the thermal decomposition of GeO2, the effluent from GeO2 decomposition was quenched, filtered and analyzed. SEM analysis revealed the formation of nano-sized particles. XRD analysis for the condensed-filtered particles showed the presence of Ge and GeO2 phases. The result can be explained by thermodynamic instability of GeO. It is believed that GeO gas disproportionates to ½Ge and ½GeO2 during quenching. 224 ml hydrogen gas per gram of reduced GeO2 was produced from the hydrolysis reaction.  相似文献   

13.
The two-step thermochemical metal oxide water-splitting cycle with the state-of-the-art material ceria inevitably produces unutilized high-quality heat, in addition to hydrogen (H2). This study explores whether the ceria cycle can be of greater value by using the excess heat for co-production of electricity. Specially, this technoeconomic study estimates the H2 production cost in a hybrid ceria cycle, in which excess heat produces electricity in an organic Rankine cycle, to increase revenue and decrease H2 cost. The estimated H2 cost from such a co-generation multi-tower plant is still relatively high at $4.55/kg, with an average H2 production of 1431 kg/day per 27.74 MWth tower. Sensitivity analyses show opportunities and challenges to achieving $2/kg H2 through improvements such as increased solar field efficiency, increased revenue from electricity sales, and a decreased capital recovery factor from baseline assumptions. While co-production improves overall system efficiency and economics, achieving $2/kg H2 remains challenging with ceria as the active material and likely will require a new material.  相似文献   

14.
We investigated the thermal reduction (T-R) of NiFe2O4, either supported by m-ZrO2 or unsupported, as the oxygen-releasing step of a solar thermochemical water splitting cycle based on a ferrite/wustite redox system, by performing the Rietveld analysis using powder X-ray diffraction. The solid materials obtained after the T-R step at 1300–1400 °C were subjected to Rietveld analysis. The amounts and chemical compositions of the wustite phase produced by the T-R step and the remaining ferrite phase were identified quantitatively. Chemical reaction formulas for the different T-R temperatures were determined from the results. Consistency for the chemical reactions of the thermal reduction was discussed and evaluated comparing the O2 amounts predicted by the chemical reaction formulas and measured experimentally by mass spectrometry.  相似文献   

15.
An experimental study of applying electro-electrodialysis (EED) for improved HI concentration in the HIx solution, a mixture of HI–I2–H2O of approximately quasi-azeotropic compositions has been carried out in the conditions of around 90 °C and using Nafion 117 and graphite electrodes. A range of 25–80% increase in initial current efficiency of HI molality in catholyte is measured with the use of EED. In general, the efficiency increases with increasing iodine molality and weight ratio of anolyte solution to catholyte solution. The EED performance degrades in time. In some cases, the HI concentration limits are observed. Electric conductivity of the HIx solution, overvoltage of electrode reaction, and the membrane voltage drop is measured in a temperature range of 20–120 °C. It is found that the EED cell voltage, which is an important cell performance parameter, is governed by the membrane voltage drop.  相似文献   

16.
《Energy》2006,31(14):2805-2822
Hydrogen, a promising and clean energy carrier, could potentially replace the use of fossil fuels in the transportation sector. Currently, no environmentally attractive, large-scale, low-cost and high-efficiency hydrogen production process is available for commercialization. Solar-driven water-splitting thermochemical cycles may constitute one of the ultimate options for CO2-free production of hydrogen. The method is environmentally friendly since it uses only water and solar energy. First, the potentially attractive thermochemical cycles must be identified based on a set of criteria. To reach this goal, a database that contains 280 referenced cycles was established. Then, the selection and evaluation of the promising cycles was performed in the temperature range of 900–2000 °C, suitable to the use of concentrated solar energy. About 30 cycles selected for further investigations are presented in this paper. The principles and basis for a thermodynamic evaluation of the cycles are also given.  相似文献   

17.
The Japan Atomic Energy Agency (JAEA) is performing research and development on the thermochemical water-splitting iodine–sulfur (IS) process for hydrogen production with the use of heat (temperatures close to 1000 °C) from a nuclear reactor process plant. Such temperatures can be supplied by a High Temperature Gas-cooled Reactor (HTGR) process. JAEA's activity covers the control of the process for continuous hydrogen production, processing procedures for hydrogen iodide (HI) decomposition, and a preliminary screening of corrosion resistant process materials. The present status of the R&D program is reported herein, with particular attention to flowsheet studies of the process using membranes for the HI processing.  相似文献   

18.
19.
选择大型化工流程模拟软件Aspen Plus对硫碘循环制氢系统进行流程优化设计与模拟,计算系统的质量平衡、能量平衡,并对系统热效率进行评估.碘化氢相中HI浓度采用本生反应实验中的过恒沸浓度,避免高能耗电渗析的使用,从而大大提高系统效率.在不考虑废热发电情况下,与文献值56.8%相比,系统产氢热效率高达68.46%.  相似文献   

20.
A Ferrite/zirconia foam device in which reticulated ceramic foam was coated with zirconia-supported Fe3O4 or NiFe2O4 as a reactive material was prepared by a spin-coating method. The spin-coating method can shorten the preparation period and reduce the coating process as compared to the previous wash-coating method. The foam devices were examined for hydrogen productivity and cyclic reactivity in thermochemical two-step water-splitting. The reactivity of these foam devices were studied for the thermal reduction of ferrite on a laboratory scale using a sun simulator to simulate concentrated solar radiation, while the thermally reduced foam devices were reacted with steam in another quartz reactor under homogeneous heating in an infrared furnace. The most reactive foam device, NiFe2O4/m-ZrO2/MPSZ, was tested for successive two-step water-splitting in a windowed single reactor using solar-simulated Xe-beam irradiation with a power input of 0.4-0.7 kWth. The production of hydrogen continued successfully in the 20 cycles that were demonstrated using the NiFe2O4/m-ZrO2/MPSZ foam device. The NiFe2O4/m-ZrO2/MPSZ foam device produced hydrogen at a rate of 1.1-4.6 cm3 per gram of device through 20 cycles and reached a maximum ferrite conversion of 60%.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号