首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 328 毫秒
1.
Presently, rice cultivars are categorized according to amylose content into three groups: low, medium and high amylose content cultivars. The correlation of amylose content with gelatinization properties, retrogradation, and pasting properties of eleven cultivars of Thai rice were investigated. Rice flour was prepared from milled rice by the wet grinding process. Onset (To), peak (Tp) and conclusion (Tc) temperatures of gelatinization, (determined by DSC) were found to be highly positively correlated with amylose levels. This correlation could be used for prediction of amylose content of rice flour. Low amylose starch could also be characterized by low degree of retrogradation (%R). The data obtained from RVA‐viscograms (peak viscosity, breakdown, setback, and pasting temperature) can be used only for characterization of the group of low amylose starches (waxy rice). It was demonstrated that low amylose rice starch provided the highest peak viscosity and breakdown and the lowest setback and pasting temperature among the groups investigated.  相似文献   

2.
Physicochemical and functional properties of starches isolated from fifteen grain amaranth cultivars (Amaranthus spp.) produced in China were analysed in this study. Amaranth starches had low but diverse amylose contents, ranging from 4.7% to 12.5%. Wide variation was also found in physicochemical properties, such as swelling power, water solubility index, pasting, thermal and textural properties. Amylose content was significantly correlated with functional properties, including pasting, thermal and textural properties and appeared to be the important determinant for these properties. Correlations among pasting, thermal and textural parameters were also significant. Principal component analysis using 17 variables extracted four principal components that explained 88% of the total variance. The first component represented amylose content, pasting and gel textural properties and explained 59% of the total variance, while the second component represented the thermal properties and accounted for an additional 14.5% of the total variance.  相似文献   

3.
The starches and flours from four different rice cultivars were evaluated for composition, crystallinity characteristics, blue value, turbidity, swelling power, solubility, pasting properties, and textural and retrogradation properties. The amylose content of starches and flours from different rice cultivars differed significantly. The results showed that the physicochemical properties of rice starch and rice flour were correlated to amylose content. The crystallinity degree of rice starch and flour depended on amylose content. The blue value, turbidity value, and gel hardness were positively correlated to amylose content; however, the swelling power, solubility, and gel adhesiveness were negatively correlated to amylose content. Furthermore, the pasting properties and gel textural and retrogradation properties of rice flours were related to the structure properties of rice starch. And the characteristics of starch, protein, and lipid significantly influenced the turbidity, pasting properties, and gel textural and retrogradation properties of rice flours.  相似文献   

4.
Morphological, viscoelastic, hydration, pasting, and thermal properties of starches separated from 10 different rice cultivars were investigated. Upon gelatinization, the G′ values of the rice starch pastes ranged from 37.4 to 2057 Pa at 25 °C, and remarkably, the magnitude depended on the starch varieties. The rheological behavior during gelatinization upon heating brought out differences in onset in G′ and degree of steepness. The cultivar with high amylose content (Goami) showed the lowest critical strain (γc), whereas the cultivars with low amylose content (Boseokchal and Shinseonchal) possessed the highest γc. The amylose content in rice starches affected their pasting properties; the sample possessing the highest amylose content showed the highest final viscosity and setback value, whereas waxy starch samples displayed low final viscosity and setback value. The onset gelatinization temperatures of the starches from 10 rice cultivars ranged between 57.9 and 64.4 °C. The amylose content was fairly correlated to hydration and pasting properties of rice starches but did not correlate well with viscoelastic and thermal characteristics. The combined analysis of hydration, pasting, viscoelastic, and thermal data of the rice starches is useful in fully understanding their behavior and in addressing the processability for food applications.  相似文献   

5.
Starch samples from ten mung bean cultivars grown in china were isolated, and their morphology, physicochemical, thermal, and pasting properties were evaluated. The objectives of the study were to investigate the starch properties and processing characteristics of different mung bean varieties, and to establish the basic foundation of improving the functionality of mung beans and their starch grown in the region. The mung bean starches showed the kidney-shaped, elliptical, small spherical and dome-shaped granules, and the starches granule size varied between 5 and 40 μm. Total starch content, amylose content, solubility, and swelling power ranged from 54.73% to 57.99%, 40.44% to 41.82%, 13.72% to 17.67%, and 17.27% to 20.55%, respectively. The pasting properties were determined using a rapid visco analyzer, and various mung bean starches exhibited different pasting profiles. Different starches differed in transition temperatures (T o, T p, and T c), gelatinization temperature range (ΔT r), and enthalpy of gelatinization (ΔH) according to differential scanning calorimeter analysis. Hydration coefficient, degree of gelatinization, and hardness of mung bean varieties ranged from 51.97% to 84.46%, 62.99% to 95.11%, and 26.07 N to 112.11 N, respectively. This study indicated that starches separated from different mung bean cultivars possess different physicochemical characteristics, and various mung beans cultivars showed diverse processing properties.  相似文献   

6.
This study investigated the effects of heat‐moisture treatment (HMT) on the resistant starch content and thermal, morphological, and textural properties of rice starches with high‐, medium‐ and low‐amylose content. The starches were adjusted to 15, 20 and 25% moisture levels and heated at 110°C for 1 h. The HMT increased the resistant starch content in all of the rice starches. HMT increased the onset temperature and the gelatinisation temperature range (Tfinish–Tonset) and decreased the enthalpy of gelatinisation of rice starches with different amylose contents. This reduction increased with the increase in the moisture content of HMT. The morphology of rice starch granules was altered with the HMT; the granules presented more agglomerated surface. The HMT affected the textural parameters of rice starches; the high‐ and low‐amylose rice starches subjected to 15 and 20% HMT possessed higher gel hardness.  相似文献   

7.
不同品种绿豆淀粉的功能特性比较研究   总被引:1,自引:1,他引:1       下载免费PDF全文
以9个品种绿豆淀粉为研究对象,研究了绿豆淀粉的化学组成及糊化特性、溶解度、膨胀度和冻融稳定性等功能特性,并分析了直链淀粉含量与功能特性的相关性。结果表明,不同品种绿豆淀粉直链淀粉含量不同,其分布范围为33.10%~44.08%;不同品种淀粉糊化特性参数间有明显差异;潍绿4号和中绿1号绿豆淀粉峰值粘度显著高于其他品种(p0.05),安绿8号具有最低破损值(p0.05),毛绿豆和安绿092具有较低的回生值。绿豆淀粉的溶解度和膨胀度与温度有关,均随温度的增加而增大。不同品种绿豆淀粉糊经一次冻融后析水率均较高,随冻融循环次数的增加,析水率均逐渐增大。相关性分析表明,直链淀粉含量与淀粉糊的最终粘度和回生值之间存在显著正相关(r=0.674,r=0.725;p0.05),与膨胀度之间具有极显著负相关关系(r=-0.805,p0.01)。  相似文献   

8.
Starches isolated from four Kidney bean cultivars (French Yellow, Contender, Master Bean, Local Red) grown in temperate climate were studied for their physico‐chemical, morphological, thermal, pasting, textural and retrogradation properties. Physico‐chemical properties such as composition, amylose content, water absorption capacity, swelling power, syneresis, freeze–thaw stability and light transmittance showed significant differences among starches. Amylose content (36.4–41.7%) showed strong correlations with peak, trough, breakdown, final and setback viscosity, gel hardness, gumminess and chewiness. The starch granule morphology of these starches showed considerable variation when studied by scanning electron microscopy. Starch granules were observed to be round, irregular or elliptical with smooth surfaces. Master Bean starch granules were larger than those of other kidney bean starches. Pasting and textural properties of French Yellow starches were found to be higher than other kidney bean starches. Local Red starches showed the highest gelatinisation transition temperatures, whereas Master Bean starches showed the lowest transition temperatures.  相似文献   

9.
Fourteen hull‐less barley cultivars, collected from four major cultivated areas in China, were employed to investigate the structural and physicochemical properties of their starches in this study. Relatively wide variations in physicochemical properties of the starches were observed. Amylose content ranged from 23.1% to 30.0%, swelling power and water solubility index ranged from 12.8 to 19.9 g g?1 and 12.7% to 23.7% respectively. Peak viscosity was from 170 to 346 Rapid Visco Unit (RVU), peak temperature (Tp) of starch gelatinisation was from 55.6 to 61.8 °C and enthalpy of starch retrogradation ranged from 0.3 to 3.1 J g?1. Weight‐based chain‐length proportions of fa, fb1, fb2 and fb3 in amylopectins ranged from 21.65% to 24.95%, 44.48% to 49.44%, 15.56% to 17.19% and 9.83% to 16.66% respectively. Correlation analyses showed that amylose content was inversely related to pasting parameters and enthalpy of gelatinisation. Pasting properties and amylopectin structures were the most important parameters to differentiate starch properties among different hull‐less barley cultivars in this study. This work will be useful for exploring applications of Chinese hull‐less barley starches in food and non‐food industries.  相似文献   

10.
This study was aimed to examine the physicochemical properties of starch extracted from two different points (base and mid heights) of the sago palms trunks (Metroxylon sagu) of different physiological growth stages namely, ‘Plawei’, ‘Bubul’, ‘Angau Muda’, ‘Angau Tua’ and ‘Late Angau Tua’ stages. The physicochemical properties of sago starch studied were the morphology of starch, amylose content, particle size and distribution profile, pasting, thermal and retrogradation profiles. The results showed significant differences in the amylose and amylopectin content as well as in the granule sizes of starch from the different growth stages. Variation was observed in the proportions of granule sizes and pasting properties of starch from base and mid heights of the different growth stages while slight or insignificant differences was observed in the thermal properties of sago starch.  相似文献   

11.
To determine the relationship between sorghum grain polyphenol content, grain structure, and starch properties, starch was isolated from 10 sorghum varieties using an alkali steep and wet‐milling procedure. SV2, a tannin‐free variety with white pericarp, gave a white starch. Varieties having red or white pericarp and higher polyphenol levels gave pink starches. Hunter colour values (L, a, b) of starches were not correlated with grain polyphenol content. Grain appearance in terms of pericarp colour, or presence or absence of pigmented testa, did not relate to the intense pink colouration of sorghum starches. Starch amylose content was significantly negatively correlated (r = −0.88, p < 0.001) to grain floury endosperm texture. Sorghum starches had higher peak viscosity (PV) in pasting than commercial maize starch. The time taken to reach peak viscosity from the initial viscosity rise was less for sorghum starches than maize starch. However, sorghum starches had a higher rate of shear thinning (Rst) than maize starch. There was a significant positive correlation between grain polyphenol content and starch PV (r = 0.75, p < 0.05). Starch gel hardness was negatively correlated to pasting properties of Rst and paste breakdown (r = −0.78 and −0.77 respectively) at p < 0.01. Peak gelatinisation temperature (Tp) occurred over a narrow range from 66 to 69 °C. Tp was negatively correlated to the floury endosperm portion of the grain (r = −0.77) at p < 0.01. It is concluded that sorghum grain polyphenol content and grain characteristics influence its starch properties. © 2000 Society of Chemical Industry  相似文献   

12.
Sixteen rice cultivars representing five cytosine‐thymine repeat (CTn) microsatellite genetic marker groups were analyzed for their cooked rice nutritionally important starch fractions (NISFs, which include rapidly digestible (RDS), slowly digestible (SDS), and resistant starch (RS)), basic grain quality indices (apparent amylose (AM), crude protein (CP), alkali spreading value (AS), and gel consistency (GC)), pasting characteristics, and thermal properties. Chemometric tools (bivariate correlation, principal component analysis, multiple linear regression, and partial least squares regression) were used to establish the association of NISF with other milled rice physicochemical properties. CT11 was generally associated with high percentages of RS and SDS, and a low percentage of RDS. CT14 was associated with low SDS; whereas, CT17 and CT18 were associated with low RS. The CT20 cultivars were similar to CT11 in SDS and RS; and to CT14, CT17, and CT18 in RDS content. RDS, SDS, and RS were loaded on three different quadrants of the principal component similarity map. RDS was not significantly correlated with any of the physicochemical properties; whereas, SDS was positively correlated with GC. RS was positively correlated with AM, setback (SB) viscosity, total setback (TSB) viscosity, and peak gelatinization temperature; and negatively correlated with breakdown (BD) viscosity. Multivariate techniques indicated lack of robustness in predicting RDS and SDS as the models only explained <50% of the variance. More robust regression models were obtained for RS, explaining >60% of its variation. Basic grain quality indices explained NISF variations better than pasting and thermal properties.  相似文献   

13.
Selected physicochemical, thermal, and rheological properties of starches isolated from new Polish potato varieties were determined. The starches contained 25.7–30.0 g/100 g d.m. of amylose and 59.5–90.2 mg/100 g d.m. of phosphorus. Gelatinization temperatures were 62.6–64.0, 68.9–69.9, and 73.6–77.0°C for TO, TP, and TE, respectively, whilst enthalpy of gelatinization amounted to 11.1–15.3 J/g. The retrogradation degree of starch was from 52.90 to 78.53%. Pasting curves showed significant differences between the starches. Peak viscosity and final viscosity ranges were 2035–4458 and 1931–2985 mPa · s, respectively. Starch pastes exhibited non‐Newtonian, shear thinning, and thixotropic behavior. After cooling they demonstrated diversified viscoelastic properties, however, all of them were classified as weak gels. Significant linear correlations among selected rheological parameters and amylose and phosphorus content were found. Results of principal component analysis demonstrated an ability to differentiate the starches isolated from different potato varieties.  相似文献   

14.
ABSTRACT

Five desi (PBG-1, PDG-4, PDG-3, GL-769, and GPF-2) and one kabuli type (L-550) chickpea cultivars were evaluated for their seed mass, volume, hydration capacity, swelling capacity, cooking time, and instrumental textural properties (hardness, cohesiveness, gumminess, and chewiness). Flour was prepared from these chickpea cultivars and various physicochemical and functional properties were determined. The pasting (pasting temperature, peak viscosity, breakdown, and final viscosity) and gelatinization (T o, T p, T c, and ΔH gel) properties of these flours were measured using Rapid Visco Analyzer (RVA) and Differential Scanning Calorimeter (DSC), respectively. Starch was also isolated from chickpea cultivars and evaluated for amylose content, swelling power, solubility, and syneresis values. Physicochemical, cooking, and instrumental textural properties of seeds of different chickpea cultivars were related to physicochemical, gelatinization, and pasting properties of their flours and physicochemical properties of their starches. Selected properties of chickpea seeds were significantly correlated with the properties of their starches and flours. Hardness value of soaked chickpea seeds was positively correlated to cooking time, seed mass, seed volume, hydration, and swelling capacity (p < 0.01). Water solubility index (WSI) of chickpea flours was positively correlated to seed mass, volume, hydration capacity, and hardness value (p < 0.05). Selected instrumental textural parameters of seeds had positive correlation with ΔH gel of flours (p < 0.01). Peak viscosity of flours showed positive correlation to breakdown, final viscosity, bulk density, and negative correlation to cohesiveness of soaked seeds (p < 0.01). Final viscosity showed negative correlation to bulk density and water absorption index (WAI) (p < 0.01) of flours.  相似文献   

15.
A set of 63 Chinese‐adapted non‐waxy rice varieties of the indica and japonica subspecies was measured to extract simple indicators for rice quality evaluation. Approximate methods including amylose content (AC), gel consistency (GC), gelatinisation temperature (as measured by alkali spreading value, ASV), protein content, etc and instrumental methods including differential scanning calorimetry (DSC), viscoamylography (with a Rapid Visco‐Analyser, RVA) and texture profile analysis were adopted. Four sets of data, ie ordinary testing, flour pasting property, texture of the cooled flour gel, and visual appearance of whole milled grain and flour, were obtained and analysed for mutual relationships. Wide variations were observed in most of the measurements, eg AC (ranging from 6.3 to 28.2%), gelatinisation temperature (Tp, 65.8–83.0 °C), protein content (7.2–13.5%), pasting (peak viscosity, 92–319 RVU) and texture (hardness, 2.5–24.4 g) properties and grain appearance (grain length, 4.8–8.4 mm), to mention a few. Significant correlations were also detected among the four sets of data of the rice varieties, such as AC versus SB (setback viscosity) with a correlation coefficient of ?0.73, AC versus HRD (gel hardness) of 0.73, HRD versus FRC (gel fracturability) of 0.99, etc. Generally, the instrumental measurements including DSC, pasting and texture properties were highly correlated with the three ordinarily used indicators of rice quality, ie AC, GC and ASV. However, there was a lack of correlation between pasting properties and textural parameters, implying effects on gel texture of retrogradation of starch after cooling of the paste. Six factors were computed by principal component factor analysis that explained 80% of the variation in the traits, among which amylose content‐related (30.8%), gelatinisation temperature‐related (14.9%) and grain appearance‐related (11.1%) factors were most important. Gel pasting properties evaluated by RVA, and flour colour played less important roles in explaining total variation (accounting for a combined 23% of the eigenvalue loading). This report can be used to identify predictive parameters for rapid screening of rice genotypes for eating quality. © 2002 Society of Chemical Industry  相似文献   

16.
Chemometric tests were carried out to better understand the multidimensional facet of starch fine structure‐relationship concerning gelatinization and pasting properties. With Ward's hierarchical cluster analysis 20 long‐grain rice starch samples were sorted out into three clusters based on similarities in functional properties, particularly, paste peak (PV) and final viscosity (FV). The three clusters (arbitrarily named Clusters A, B, and C) exhibited a pasting profile trend of PV<FV, PV˜FV, and PV>FV, respectively. Cluster A samples were also lower in peak temperature, range and enthalpy of gelatinization, and swelling power. These attributes were associated with higher amylose content (AM), β‐amylolysis limit, and percentage of B1 chains (DP13‐24), but lower amylopectin weight‐average molar mass (Mw) and percentage of A chains (DP6‐12). A 5‐variable linear discriminant function correctly predicted 85% of the Ward's cluster membership of the individual cultivars. The discriminant function included the variables A, B1, and B2 (DP25‐36) chains, average chain length (ACL), and gyration radius (Rz). Fine structure variance was fully explained by a total of nine principal components, with the first three components cumulatively accounting for 74%. The leading variables included in the three rotated components pertained to amylopectin chain length distribution (A, B2, and B3+ or DP≥37 chains, and ACL) and amylopectin molar mass (Mw, Rz, and polydispersity). AM and Mw were loaded most frequently in the 4‐variable, best‐fit linear regression models for predicting gelatinization and pasting properties. A combination of at least two fine structure variables controls the functionality of rice starch.  相似文献   

17.
Starches from two cultivars (Bola and Dik) of innala tubers (Solenostemon rotundifolius) grown in the same location and under identical environmental conditions in Sri Lanka was isolated and some of the characteristics determined. The yield of starch from both cultivars was 16.0% on initial tuber weight. The shape of the granules in both cultivars was dome shaped and hemispherical with 4–5 slightly concaved facets. Pores were found randomly distributed over the surface of both starch granules. The amylopectin branch chain length distribution was nearly similar for both starches. However, the starches differed with respect to granular swelling, amylose leaching, susceptibility towards acid and enzyme hydrolysis, gelatinization characteristics, pasting properties and retrogradation kinetics. The results showed that differences in amylose content, lipid complexed amylose chains, relative crystallinity and extent of interaction between amylose chains in the amorphous regions of the granule had a substantial impact on the observed differences in physicochemical properties.  相似文献   

18.
The effect of sodium hypochlorite on the physicochemical and functional properties of normal and waxy corn starches was investigated in this study. It was found that both carboxyl and carbonyl contents of oxidized starches from normal corn were higher than those of waxy corn. The introduction of carboxyl and carbonyl groups resulted in lower amylose content and swelling power. Both amylose and amylopectin were oxidized and degraded during oxidation but amylose was more susceptible to oxidation. Studies conducted on paste clarity revealed that the percentage transmittance increased after oxidation. The morphology of the starches was not altered after oxidation. Thermal properties measured by differential scanning calorimeter, showed that oxidation reduced transition temperatures (onset temperature, To; peak temperature, Tp; and conclusion temperature, Tc), gelatinization and retrogradation enthalpies of both normal and waxy corn starches. The retrogradation tendency was reduced after oxidation both in normal and waxy corn starches. Oxidation produced waxy starch with significantly higher peak (PV), trough (TV), breakdown (BV), final (FV), and setback viscosity (SV) as demonstrated by using a rapid visco analyzer. Oxidation reduced the pasting temperature of both normal and waxy corn starches. Also, the principal component analysis (PCA) study was conducted to find the overall variations among the oxidized starches studied. Together, the first two components represent 88.7 g/100 g of the total variability.  相似文献   

19.
Physicochemical properties [swelling power (SP), pasting behaviour and retrogradation] of five wild type (wt), five amylose free (amf), four high-amylose (ha) potato starches (ps) and one wt and amf cassava starch (cs) were investigated. While swelling of wtps occurred in two phases, amfps showed a very fast swelling and no gel of swollen granules was observed at higher temperatures (>90 °C). Haps underwent only restricted swelling. SP of cassava starches were lower than those of potato starches. Wtps leached mainly amylose (AM) during heating at low temperatures. Molecules of higher molecular weight (MW) leached out at higher temperatures. Longer amylopectin (AP) chains [degree of polymerisation (DP) > 18] inhibited swelling while short chains (DP < 14) favoured swelling. Starch pasting behaviour of 5.0 and 8.0% starch suspensions was studied using Rapid Visco Analyser (RVA). For 5.0% suspensions, increased levels of high-MW AP and decreased levels of AM molecules led to higher peak viscosity. Longer AP chains (DP > 18) depressed peak viscosity, while short chains (DP < 14) increased peak viscosity for both concentrations. At 8.0%, peak viscosity increased with starch granule size. After 1 day of storage of gelatinised starch suspensions, wtps and especially amfps showed only limited AP retrogradation. In contrast, the high enthalpies of retrograded AP (ΔHretro) and peak and conclusion temperatures of retrogradation (Tp,retro and Tc,retro) of haps suggested partial cocrystallisation between AM and AP. Chains with DP 18–25 seemed to be more liable to AP retrogradation. Wtcs and amfcs did not retrograde at room temperature.  相似文献   

20.
Physicochemical properties (pasting and thermal properties, swelling power, water solubility and antioxidant activities) and chemical composition of pumpkin flour (PF) and starches, isolated from fresh pumpkin (SFF) or flour (SFP) were compared. SFP and SFF had similar proximate composition and amylose content. Drying process during PF preparation modified starch properties. PF exhibited greater antioxidant activities (DPPH, ABTS and FRAP), but had lower β‐carotene than fresh pumpkin. SFF and SFP had higher amylose content than PF, and exhibited a B‐type X‐ray diffraction pattern with spherical and dome‐like starch granules. Peak viscosity of SFP was relatively higher than that of SFF, probably due to lower swelling power and water solubility, which indicated increased granular rigidity in the SFP starch structure. Compared with SFF and SFP, PF had significantly higher onset (To), peak (Tp) and conclusion (Tc) temperatures due to a lower starch content and relatively higher fibre content, which resulted in lower gelatinisation enthalpy (ΔH).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号