首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The purpose of this investigation was to quantify the forces and moments at the shoulder joint during free, level wheelchair propulsion and to document changes imposed by increased speed, inclined terrain, and 15 minutes of continuous propulsion. Data were collected using a six-camera VICON motion analysis system, a strain gauge instrumented wheel, and a wheelchair ergometer. Seventeen men with low level paraplegia participated in this study. Shoulder joint forces and moments were calculated using a three-dimensional model applying the inverse dynamics approach. During free propulsion, peak shoulder joint forces were in the posterior (46 N) and superior directions (14 N), producing a peak resultant force of 51 N at an angle of 185 degrees (180 degrees = posterior). Peak shoulder joint moments were greatest in extension (14 Newton-meters [Nm]), followed by abduction (10 Nm), and internal rotation (6 Nm). With fast and inclined propulsion, peak vertical force increased by greater than 360%, and the increase in posterior force and shoulder moments ranged from 107% to 167%. At the end of 15 minutes of continuous free propulsion, there were no significant changes compared with short duration free propulsion. The increased joint loads documented during fast and inclined propulsion could lead to compression of subacromial structures against the overlying acromion.  相似文献   

2.
We developed a dynamic model of the upper extremity to simulate forearm and wrist movements. The model is based on the skeletal structure of the arm and is capable of elbow flexion/extension, forearm pronosupination, and wrist flexion/extension and radial/ulnar deviation movements. Movements are produced by activation of a Hill-type model of muscle, and limits on joint motion are imposed by passive moments modeled after experimental results. We investigated the muscle output force sensitivity, as well as wrist flexion/extension motion sensitivity to parameter variations. The tendon slack length and muscle fiber length were found to have the greatest influence on muscle output and flexion/extension wrist motion. The model captured the direction of the moment vectors at the wrist well, but predicted much higher moments than were measured by stimulating the paralyzed muscles of one tetraplegic subject.  相似文献   

3.
The aim of this study was to assess the influence of head position on dorsal neck muscle efficiency in the sagittal plane. Fifteen subjects participated. The EMG versus isometric extension moment of dorsal neck muscles was studied in neutral (with subject gazing on a horizontal plane), cervical flexed, and cervical extended positions. A vectorial construction was created by means of photographs to calculate the extension moment which balances measured pulling force and gravitational force in isometric conditions. The maximum extension was highest in neutral position. The EMG/moment relationship was non-linear. The ratio between the EMG and the generated moment differed significantly in the three positions (p < 0.01) and was lower in neutral position. These results demonstrate the influence of head position on dorsal neck muscle efficiency; muscles appeared most efficient in neutral position. Muscle length, depending on head position, is probably the main influencing factor.  相似文献   

4.
Determining the conditions under which an approaching ice floe becomes entrained under an intact ice cover is a fundamental component of any numerical model that attempts to successfully predict ice-jam formation or ice-jam release events. Current stability theory is based on empirical relationships that attempt to characterize stability on the basis of Froude number. This paper seeks to evaluate the stability of floating ice blocks though a force-moment analysis, building on previously published experimental results that measured the dynamic pressures beneath a floating ice block under various thickness-to-depth ratios and flow velocities. The experimental results were extended to measure the dynamic pressures beneath a block that had rotated about its downstream corner until the top upstream corner was at the water surface elevation, giving an indication of how the submerging force and underturning moment changes as the block begins to rotate. The force-moment analyses developed in this paper were compared with previously published observations of block entrainment and were found to match those observations well.  相似文献   

5.
When moving objects with a precision grip, fingertip forces normal to the object surface (grip force) change in parallel with forces tangential to the object (load force). We investigated whether voluntary wrist actions can affect grip force independent of load force, because the extrinsic finger muscles cross the wrist. Grip force increased with wrist angular speed during wrist motion in the horizontal plane, and was much larger than the increased tangential load at the fingertips or the reaction forces from linear acceleration of the test object. During wrist flexion the index finger muscles in the hand and forearm increased myoelectric activity; during wrist extension this myoelectric activity increased little, or decreased for some subjects. The grip force maxima coincided with wrist acceleration maxima, and grip force remained elevated when subjects held the wrist in extreme flexion or extension. Likewise, during isometric wrist actions the grip force increased even though the fingertip loads remained constant. A grip force "pulse" developed that increased with wrist force rate, followed by a static grip force while the wrist force was sustained. Subjects could not suppress the grip force pulse when provided visual feedback of their grip force. We conclude that the extrinsic hand muscles can be recruited to assist the intended wrist action, yielding higher grip-load ratios than those employed with the wrist at rest. This added drive to hand muscles overcame any loss in muscle force while the extrinsic finger flexors shortened during wrist flexion motion. During wrist extension motion grip force increases apparently occurred from eccentric contraction of the extrinsic finger flexors. The coactivation of hand closing muscles with other wrist muscles also may result in part from a general motor facilitation, because grip force increased during isometric knee extension. However, these increases were related weakly to the knee force. The observed muscle coactivation, from all sources, may contribute to grasp stability. For example, when transporting grasped objects, upper limb accelerations simultaneously produce inertial torques at the wrist that must be resisted, and inertial loads at the fingertips from the object that must be offset by increased grip force. The muscle coactivation described here would cause similarly timed pulses in the wrist force and grip force. However, grip-load coupling from this mechanism would not contribute much to grasp stability when small wrist forces are required, such as for slow movements or when the object's total resistive load is small.  相似文献   

6.
A previous pilot study demonstrated that a force and frequency-weighted filter network could be developed for processing continuous biomechanical measures of repetitive wrist motions and exertions. The current study achieves the objective by modelling subjective discomfort for repetitive wrist flexion using controlled posture, pace and force. A three-level fractional factorial experiment was conducted involving repetitive wrist flexion (2 s/motion, 6 s/motion, 10 s/motion) from a neutral posture to a given angle (10 degrees, 28 degrees, 45 degrees) against a controlled resistance (5 N, 25 N, 50 N) using a Box Behnken design. Ten subjects participated. Discomfort was reported on a 10 cm visual analogue scale. Results of response surface regression analysis revealed that main effects of force, wrist flexion angle, and repetition were all significant (p < 0.05) and that no second-order effects were observed. Linear regression analysis on these factors established a discomfort model on which the filter characteristics were based. The pure error test model revealed no significant lack of fit (p > 0.05). The continuous model was compared and agreed with discrete psychophysical data from other published studies. The model was used for generating parameters for a force and frequency-weighted digital filter that weighs continuous wrist postural signals with corresponding force in proportion to the equal discomfort function as a function of frequency of repetition. These filters will enable integration of large quantities of biomechanical data in field studies.  相似文献   

7.
A new brace, the hip joint moment reduction brace, has been designed and constructed. The basic construct of the brace incorporates only the thigh, and it minimally restricts one's activities of daily living. The concept of the brace is to reduce the frontal plane moment of the applied force against which the abductor muscle must contract to balance, and this reduction of the frontal plane moment results in reduction of the abductor muscle force. The brace uses the mechanism of the ischial weightbearing and lessens the abductor moment by transmitting load from the ischium through the condyle of the femur. In gait testing, the maximum ischial load taken up by the brace was 36.9% of the ground reaction force in the late stance phase, and the integrated electromyogram of the abductor muscle was reduced by 32.6% during the whole stance phase using this brace. These findings confirmed a reduction in the frontal plane moment of the hip joint and the potential for reduction in the load on the hip joint. The hip joint moment reduction brace is recommended as effective conservative management of hip disorders, such as coxarthrosis, that are caused or worsened by biomechanical insufficiency.  相似文献   

8.
The purpose of this project was to develop a system for dynamically sensing pushrim propulsion forces and torques and to collect kinetic data with the device. A system was developed to detect the forces and torques applied to the wheelchair pushrim, record, store, and process the measured data, and display the kinetic information for analysis. Ten adults, including four male wheelchair users, three ambulatory men, and three ambulatory women, pushed a wheelchair with the SMARTWheel on a dynamometer while their kinematics were videotaped. The kinetic data collected with our wheel were correlated with stick figure representations of digitized kinematic data obtained through video analysis. The close agreement between the kinetic results and the Kinematic results provided a temporal validation of the ability of the wheel to detect forces and torques applied to the wheelchair pushrim. The recorded forces and torques were in agreement with previously reported magnitudes.  相似文献   

9.
We tested whether the rate at which force is applied to the ground sets metabolic rates during classical-style roller skiing in four ways: 1) by increasing speed (from 2.5 to 4.5 m/s) during skiing with arms only, 2) by increasing speed (from 2.5 to 4.5 m/s) during skiing with legs only, 3) by changing stride rate (from 25 to 75 strides/min) at each of three speeds (3.0, 3.5, and 4.0 m/s) during skiing with legs only, and 4) by skiing with arms and legs together at three speeds (2.0-3.2 m/s, 1.5 degrees incline). We determined net metabolic rates from rates of O2 consumption (gross O2 consumption - standing O2 consumption) and rates of force application from the inverse period of pole-ground contact [1/tp(arms)] for the arms and the inverse period of propulsion [1/tp(legs)] for the legs. During arm-and-leg skiing at different speeds, metabolic rates changed in direct proportion to rates of force application, while the net ground force to counteract friction and gravity (F) was constant. Consequently, metabolic rates were described by a simple equation (metab = F . 1/tp . C, where metab is metabolic rates) with cost coefficients (C) of 8.2 and 0.16 J/N for arms and legs, respectively. Metabolic rates predicted from net ground forces and rates of force application during combined arm-and-leg skiing agreed with measured metabolic rates within +/-3. 5%. We conclude that rates of ground force application to support the weight of the body and overcome friction set the energetic cost of skiing and that the rate at which muscles expend metabolic energy during weight-bearing locomotion depends on the time course of their activation.  相似文献   

10.
Measurements of the vertical component of ground reaction force (ORF) and dynamic center of pressure (COP) were recorded for five subjects with midfoot level amputations and six with Syme's ankle disarticulation amputations. All of the subjects underwent amputation surgery as a consequence of peripheral vascular disease and diabetes. GRF measurement was accomplished with the F-Scan system (Tekscan, Boston, MA). Each group exhibited a consistent, reproducible pattern of gait. Subjects with Syme's ankle disarticulation initiated initial loading response, i.e., heel strike, with a concentration of GRF in the center of the anatomic heel. COP progressed along the midline to the center of the anatomic forefoot, where GRF was concentrated at push-off. Midfoot amputees initiated loading at the lateral-posterior heel. COP progressed medially to the midline, where it progressed distally to the level of the distal residual limb (proximal metatarsal metaphyses). It then shifted medially under the base of the first metatarsal, where a small concentration of GRF occurred at push-off, similar to the normal foot. These findings explain the decreased magnitude of propulsion seen in midfoot level amputees and may explain the seemingly paradoxical increased metabolic cost of walking observed in midfoot amputees as compared with Syme's ankle disarticulation amputees.  相似文献   

11.
The physical strain and mechanical efficiency of manual wheelchair propulsion using handrim and hubcrank propelled racing wheelchairs were studied during a submaximal wheelchair exercise test on a stationary roller ergometer. Ten healthy male able-bodied subjects conducted two exercise tests in a random order and measurements of phyical strain (oxygen uptake, minute ventilation, respiratory exchange ratio, heart rate) and gross mechanical efficiency were obtained. During the experiment torque data, speed and power output were determined at a sample frequency of 0.1 Hz. Analysis of variance for repeated measures (p < 0.05) was used to establish differences. The hubcrank propulsion mechanism showed a significantly lower physical strain and higher gross mechanical efficiency in comparison with the handrim propulsion mechanism. The lower strain and higher efficiency in propelling the hubcrank partly seems to be due to the continuous biphasic cyclic propulsion movement, which allows both push and pull forces to be exerted. This involves flexor and extensor muscles around elbow and shoulder, leading to a reduced tendency to fatigue in individual muscles in the upper extremity. The more natural and neutral wrist-hand orientation also seems to diminish finger flexor activity and wrist-stabilizing muscle activity, and will thus reduce physical strain both with respect to the cardiorespiratory and musculoskeletal systems. The latter may influence the tendency to develop carpal tunnel problems positively. The reduced strain of the hubcrank propulsion mechanism clearly has a number of advantages over handrims for the human engine in the short and long run. However, technical innovation should address current practical problems of steering and braking. Clearly, hubcranks can be used in low-seated wheelchairs (i.e. racing wheelchairs) only, and in subjects with a sufficiently large range of motion in the upper extremity. Moreover, the increased width is a drawback of hubcranks. Care should be taken while negotiating door posts.  相似文献   

12.
平面弯曲带式输送机运送物料的基本原理是将水平转弯段输送带的内曲线抬高,同时将两侧托辊前倾安装,以平衡输送带张力的分力与离心力。根据物料输送要求,结合现场实际情况,综合考虑运量及成本等,确定输送机的主要参数:带宽1200mm,带速1.6m/s,运输量800t/h,弯曲段曲率半径500m,提升高度10.95m,电机功率250kW。同时确定了输送机转弯处的托辊变位、可变槽角和内曲线抬高角。应用后,输送机运行良好,各项性能指标与设计值基本吻合。  相似文献   

13.
Using Schwarz’s alternating method and Muskhelishvili’s complex variable function techniques, this paper presents an iterative algorithm method for the effective and accurate calculation of the stresses in an elastic solid of infinite extent containing multiple elliptic holes and subject to external loading at the infinity. The elliptic holes can have different dimensions and locate at any points while their axis orientations must be orthogonal. The proposed iterative algorithm method is based on the approximation of the resultant force vector on each elliptic hole boundary as a series of complex variable. As a result, exact closed-form analytical stress solutions can then be obtained for the solid with a single elliptic hole whose boundary is subject to the reverse resultant force vector in the forms of complex series. The numerical results presented in the paper show that the iterative solution converges quickly and stably. The proposed convergent criterion ensures the satisfaction of the required accuracy of the stress results. The stress concentration at elliptic holes can then be evaluated with high accuracy.  相似文献   

14.
Currently, the AASHTO-LRFD design code specifies the same effective slab width design criteria for both positive moment sections and negative moment sections. The only difference in computing effective slab width between the positive and negative moment regions is the value of effective span length (Le), the definition of which is problematic. The effective slab width concept for the positive moment regions has been investigated by many researchers. However, the classical effective slab width definition does not take into account both the strain variation through the slab thickness and the mechanism that redistributes load from concrete to steel reinforcement after cracking. In this paper, a more robust effective slab width definition for the negative moment section is introduced to account for these factors. The proposed definition is developed for negative moment regions and explored by using the finite-element method (FEM). The finite-element modeling scheme is briefly discussed, and the model is successfully verified with experimental results. Numerical results show the simplicity, accuracy, and robustness of the proposed definition in extracting effective slab width values from FEM results. Numerical results also indicate that the effective slab width criteria in the current AASHTO-LRFD Specifications is typically conservative for larger girder spacings. Detailed calculations of effective slab width for the negative moment regions using the proposed definition are summarized at the end of this paper.  相似文献   

15.
Analytical Solution for Piles Supporting Combined Lateral Loads   总被引:1,自引:0,他引:1  
Analytical solutions of normalized maximum deflection and normalized maximum moment for laterally loaded long piles in homogeneous elastoplastic soil under combined loads are presented in this paper. Both the normalized deflection surface and normalized moment surface are continuous and increasing constantly with normalized applied force and moment with various slopes. It shows that the normalized applied force and moment have different contributions to the deflection and moment. In general, the variation of normalized moment surface is relatively moderate compared to normalized maximum deflection. Due to the nonlinear effect, the deflections and moments using superposition approach will be on the unsafe side. The analytical solutions can be used for any elastic materials, any type of soil, and any shapes of pile cross section. Above all, the analytical solutions may be easily applied to calculate the maximum deflection or moment of lateral long piles subject to combined loads accurately using a calculator.  相似文献   

16.
对绕固定轴旋转刚体的惯性力系向回转轴上一点O简化构成的惯性力矢和力偶矩矢进行分析,在此基础上,采取对应的工艺优化技术措施,通过机械加工手段,使工件的旋转轴与其中心惯性主轴趋于一致,以达到平衡品质等级的技术要求。同时,对工艺进行优化,以期大幅度提高生产效率,缩短生产周期,获得良好的综合经济技术效益。  相似文献   

17.
Emotions, affects and humor play an important part in psychopathology. This study describes the definition of these different terms as well as their psychological concepts. Concerning quantitative psychopathology, the available scales of evaluation of affects or emotions are destinated to evaluate the subjective compound of the emotions, depressive humor, seek for sensations, pleasure or anhedonia. They all have the same aim: the evaluation, in a subjective way, of the basic affectionate state of the subject at a precise moment in his life. The subject's affectionate reactivity to external emotional stimulations can also be studied using different methods of emotional inductions. These methods can be applied in a psychopathological as well as in a pharmacological point of view.  相似文献   

18.
Our goal was to provide some insights into how the CNS controls and maintains an upright standing posture, which is an integral part of activities of daily living. Although researchers have used simple performance measures of maintenance of this posture quite effectively in clinical decision making, the mechanisms and control principles involved have not been clear. We propose a relatively simple control scheme for regulation of upright posture that provides almost instantaneous corrective response and reduces the operating demands on the CNS. The analytic model is derived and experimentally validated. A stiffness model was developed for quiet standing. The model assumes that muscles act as springs to cause the center-of-pressure (COP) to move in phase with the center-of-mass (COM) as the body sways about some desired position. In the sagittal plane this stiffness control exists at the ankle plantarflexors, in the frontal plane by the hip abductors/adductors. On the basis of observations that the COP-COM error signal continuously oscillates, it is evident that the inverted pendulum model is severely underdamped, approaching the undamped condition. The spectrum of this error signal is seen to match that of a tuned mass, spring, damper system, and a curve fit of this "tuned circuit" yields omega n the undamped natural frequency of the system. The effective stiffness of the system, Ke, is then estimated from Ke = I omega n2, and the damping B is estimated from B = BW X I, where BW is the bandwidth of the tuned response (in rad/s), and I is the moment of inertia of the body about the ankle joint. Ten adult subjects were assessed while standing quietly at three stance widths: 50% hip-to-hip distance, 100 and 150%. Subjects stood for 2 min in each position with eyes open; the 100% stance width was repeated with eyes closed. In all trials and in both planes, the COP oscillated virtually in phase (within 6 ms) with COM, which was predicted by a simple 0th order spring model. Sway amplitude decreased as stance width increased, and Ke increased with stance width. A stiffness model would predict sway to vary as Ke-0.5. The experimental results were close to this prediction: sway was proportional to Ke(-0.55). Reactive control of balance was not evident for several reasons. The visual system does not appear to contribute because no significant difference between eyes open and eyes closed results was found at 100% stance width. Vestibular (otolith) and joint proprioceptive reactive control were discounted because the necessary head accelerations, joint displacements, and velocities were well below reported thresholds. Besides, any reactive control would predict that COP would considerably lag (150-250 ms) behind the COM. Because the average COP was only 4 ms delayed behind the COM, reactive control was not evident; this small delay was accounted for by the damping in the tuned mechanical system.  相似文献   

19.
Dual search coils were used to record horizontal, vertical and torsional eye movement components of one eye during nystagmus caused by off-center yaw rotation (yaw centrifugation). Both normal healthy human subjects (n=7) and patients with only one functioning labyrinth (n=12) were studied in order to clarify how the concomitant linear acceleration affected the nystagmus response. Each subject was seated with head erect on the arm of a fixed-chair human centrifuge, 1 m away from the center of the rotation, and positioned to be facing along a radius; either towards (facing-in) or away from (facing-out) the center of rotation. Both yaw right and yaw left angular accelerations of 10 degrees s(-2) from 0 to 200 degrees/s were studied. During rotation a centripetal linear acceleration (increasing from 0 to 1.24xg units) was directed along the subject's naso-occipital axis resulting in a shift of the resultant angle of the gravitoinertial acceleration (GIA) of 51 degrees in the subject's pitch plane and an increase in the total GIA magnitude from 1.0 to 1.59xg. In normal subjects during the angular acceleration off-center there were, in addition to the horizontal eye velocity components, torsional and vertical eye velocities present. The magnitude of these additional components, although small, was larger than observed during similar experiments with on-center angular acceleration (Haslwanter et al. 1996), and the change in these components is attributed to the additional effect of the linear acceleration stimulation. In the pitch plane the average size of the shift of the axis of eye velocity (AEV) during the acceleration was about 8 degrees for a 51 degrees shift of the GIA (around 16% of the GIA shift) so that the AEV-GIA alignment was inadequate. There was a very marked difference in the size of the AEV shift depending on whether the person was facing-in [AEV shift forward (i.e. non-compensatory) of about 4 degrees] or facing-out [AEV shift forward (i.e. compensatory) of around 12 degrees]. The linear acceleration decreased the time constant of decay of the horizontal component of the post-rotatory nystagmus: from an average of 24.8 degrees/s facing-in to an average of 11.3 degrees/s facing-out. The linear acceleration dumps torsional eye velocity in an manner analogous to, but independent of, the dumping of horizontal eye velocity. Patients with UVD had dramatically reduced torsional eye velocities for both facing-in and facing-out headings, and there was little if any shift of the AEV in UVD patients. The relatively small effects of linear acceleration on human canal-induced nystagmus found here confirms other recent studies in humans (Fetter et al. 1996) in contrast to evidence from monkeys and emphasizes the large and important differences between humans and monkeys in otolith-canal interaction. Our results confirm the vestibular control of the axis of eye velocity of humans is essentially head-referenced whereas in monkeys that control is essentially space-referenced.  相似文献   

20.
Prolonged periods of ischemia/reperfusion are known to deleteriously affect skeletal muscle performance. However, in animal models, brief bouts of both skeletal and cardiac muscle ischemia/reperfusion have been shown to decrease skeletal muscle injury and increase skeletal muscle force output, a phenomenon termed "preconditioning". Because there are transient periods of ischemia/reperfusion during isometric and concentric muscle contractions, the purpose of this study was to examine how short duration forearm occlusion/reperfusion prior to exercise, influenced isometric skeletal muscle force output in humans. Eleven subjects (6 men and 5 women, mean age 25 +/- 1 years) participated in this study. Using a Biodex multijoint ergometer, a protocol of isolated, isometric forearm wrist flexions was utilized to measure muscle force output in two separate trials. In the first trial, 15 isometric maximal voluntary contractions (MVCs) of the wrist flexors were performed in 20 intervals interspersed with 10 s of rest. In the second trial, forearm occlusion was induced (2 min at 200 mmHg by blood pressure cuff occlusion, with 10 s of hyperemia) prior to exercise. Following cuff occlusion, an identical exercise protocol was followed, i.e. 15 isometric wrist flexor MVCs performed in 20 intervals interspersed with 10 s of rest. The total force output over 15 MVCs was greater following intermittent cuff occlusion (no occlusion 2619 +/- 320 ft.lbs vs cuff occlusion 2986 +/- 195 ft.lbs; p < 0.05). The mean force output per MVC also increased during exercise following intermittent cuff occlusion (no occlusion 174 +/- 21 ft.lbs vs cuff occlusion 199 +/- 13 ft.lbs; p < 0.05). In a second set of experiments, we found a 3 to 4 fold hyperemic blood flow following cuff occlusion. These data suggest that brief periods of cuff occlusion/reperfusion may increase repetitive MVC force output by skeletal muscle. Although further study is needed to fully understand the effects of occlusion/reperfusion on skeletal muscle force output, we hypothesize that, in part, this putative effects is secondary to the hyperemic blood flow which follows cuff occlusion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号