首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
The SrLa2?xO4:xEu3+ phosphors are synthesized through high-temperature solid-state reaction method at 1473 K with various doping concentration. Their phase structures, absorption spectra, and luminescence properties are investigated by X-ray diffraction (XRD), UV–Vis spectrophotometer and photoluminescence spectrometry. The intense absorption of SrLa2?xO4:xEu3+ phosphors have occurred around 400 nm. The prominent luminescence spectra of the prepared phosphors exhibited bright red emission at 626 nm. The doping concentration 0.12 mol% of Eu3+ is shown to be optimal for prominent red emission and chromaticity coordinates are x?=?0.692, y?=?0.3072. Considering the high colour purity and appropriate emission intensity of Eu3+ doped SrLa2O4 can be used as red phosphors for white light emitting diodes (WLEDs).  相似文献   

2.
Ba2LaV3O11:Eu3+ phosphors were firstly synthesized by the traditional solid-state reaction method at 1100 °C. Their luminescence properties were investigated by photoluminescence excitation and emission spectra. The excitation spectrum shows a broad band centered at about 275 nm in the region from 200 to 370 nm, which is attributed to an overlap of the charge transfer transitions of O2??→?V5+ and O2??→?Eu3+. The phosphors exhibit the red emissions of Eu3+ and the emission intensity ratio of 5D0?→?7F2 to 5D0?→?7F1 is dependent on the Eu3+ concentration due to an environment change about Eu3+ ions. Concentration quenching occurs at 30 mol% in the phosphors and exchange interaction is its main mechanism. Ba2LaV3O11:Eu3+ displays tunable CIE color coordinates from yellow orange to red depended on Eu3+ content, which may have a potential application for illuminating and display devices.  相似文献   

3.
For the first time, CaMoO4: xEu3+ (x = 0.02, 0.04, 0.06, 0.08, 0.1) red phosphor nanoparticles were synthesized using the simple mechanochemically assisted solid state meta-thesis (SSM) reaction method and the luminescence properties as a function of Eu3+ ion concentration was investigated. The characteristics of the phosphor materials were analyzed using X-ray diffraction, fourier transform infrared spectroscopy, photoluminescence (PL) and diffuse reflectance spectroscopy. For 8 mol% of Eu3+ concentration, the phosphor shows an intensified excitation peak at 392 nm indicating a strong absorption. The PL emission spectra of CaMoO4: Eu3+ phosphors showed an intense peak at 615 nm (red) which corresponds to 5D0 → 7F2 transition of Eu3+. The optimal Eu3+ concentration in CaMoO4 phosphors for enhanced red emission occurs for 8 mol% and above this concentration, the emission intensity decreases due to quenching effect. The CIE colour coordinates of the CaMoO4: 0.08Eu3+ red phosphor coincide very well with the standard values of NTSC. The red emission intensity of the SSM prepared CaMoO4: 0.08Eu3+ red phosphor is 4.7 times greater than that of the commercial Y2O2S: Eu3+ red phosphor and 1.6 times more than the same phosphor prepared by the solid state reaction method.  相似文献   

4.
Sr3Al2O6:Eu2+, Dy3+ phosphors were synthesized by the polymer precursor method. The X-ray powder diffraction patterns show that the samples have a cubic structure with a space group of Pa3. In the excitation spectrum, the phosphors show a wide absorption in the UV region from 250 to 450 nm, which corresponds to the crystal field splitting of the Eu2+ d-orbital. All the emission spectrum of Sr3Al2O6:Eu2+, Dy3+ phosphors show the broad band emission peaked at about 518 nm, which can be ascribed to the typical 4f65d1 → 4f7 transitions of Eu2+ ions. And the best dopant concentration of Dy3+ ions for Sr3Al2O6:2 mol%Eu2+, xDy3+ phosphors is 2 mol%. The excitation wavelengths have no influences on emission peaks, but have clear influences on emission intensities.  相似文献   

5.
Structural and spectroscopic behavior of TeO2–PbO–Eu2O3 glass ceramics containing small amounts of Ag2O (0.5 mol%) or metallic Ag nanoparticles (AgNPs) (0.33 mol%) have been studied by varying their Eu2O3 content (0–10 mol%). The structural behavior of these samples was investigated by means of X-ray diffraction (XRD), SEM microscopy, and Fourier transform infrared (FTIR) spectroscopy. The average unit-cell parameters, crystallites size, and the quantitative ratio of the crystallographic phases in the samples were evaluated based on XRD data. FTIR spectroscopy data revealed that the TeO3 and TeO4 are the main structural units of these glass ceramics and their ratio, TeO3/TeO4, changes as function of the europium oxide content and the codoping of the samples. Luminescence spectroscopy measurements evidenced the important peaks located at 438, 550, and 722 nm due to the Pb2+ ions and at 589 and 611 nm due to the Eu3+ ions present in the studied samples. The presence of AgNPs in the studied glass ceramics determines a considerable enhancement of the luminescence bands of Eu3+ ions from 589 and 611 nm.  相似文献   

6.
In this paper, the structural, morphological and spectral properties of Eu3+ and Tb3+ doped strontium zirconium trioxide perovskite phosphors are reported. The samples were synthesized by solid state reaction route with different doping concentrations of Eu3+ and Tb3+ ions. These synthesized phosphors were characterized by PXRD for structural analysis. The phosphors report orthorhombic structure with average crystallite size of 48 nm. FESEM and HRTEM analysis were done here for topographical and morphological studies. Also, the FTIR spectra of synthesized samples were investigated for functional group analysis. Photoluminescence and thermoluminescence spectra of synthesized samples were studied. On subjecting to 230 nm excitation, the phosphors give three distinct emissions of 596, 610 and 690 nm in the visible region corresponding to 5D07F1, 5D07F2 and 5D07F4 of Eu3+ ions. The synthesized samples were also subjected to CIE and Afterglow decay analysis. The average decay lifetime is recorded as 56.24 ns confirming the luminescence decay characteristics of short duration. In TL analysis of these phosphors, second-order kinetics with low activation energy varying from 0.50002 to 0.65668 eV is reported. The enhanced optical characteristics of prepared perovskite phosphor substantiate it as a proficient alternative for photovoltaic, optical and sensing applications.  相似文献   

7.
NaLa(WO4)2:Eu3+ phosphors with different Eu3+ concentrations have been synthesized by a hydrothermal method. The phase is confirmed by XRD analysis, which shows a pure-phase NaLa(WO4)2 XRD pattern for all of NaLa(WO4)2:Eu3+ phosphors. The SEM and TEM images indicate that all of NaLa(WO4)2:Eu3+ phosphors have a octahedral morphology. These suggest that the Eu3+ doping has no influence on the structure and growth of NaLa(WO4)4 particles. By monitoring the emission of Eu3+ at 615 nm, NaLa(WO4)2:Eu3+ phosphors show excitation bands originating from both host and Eu3+ ions. Under the excitation at 271 nm corresponding to WO4 2? groups, emission bands coming from the 1A1 → 3T1 transition with the WO4 2? groups and the 5D0 → 7Fj (j = 0, 1, 2, 3 and 4) transitions of Eu3+ are observed. The emission intensity relating to WO4 2? groups decreases with increasing Eu3+ concentration. But emission intensities of Eu3+ increase firstly and then decreases because of concentration quenching effect. Under the excitation at 395 nm corresponding to 7F0 → 5L6 transition of Eu3+, only characteristic Eu3+ emission bands can be observed. The results of this work suggest that tunable luminescence can be obtained for Eu3+ doped NaLa(WO4)2 phosphors by changing Eu3+ concentration and excitation wavelength.  相似文献   

8.
YAL3(BO3)4:Eu3+ phosphors were fabricated by the sol-gel method. The structure properties were measured by x-ray diffraction (XRD) and infrared spectra (IR). Doping concentration of Eu3+ ions in YAL3(BO3)4:Eu3+ phosphors of 0, 1, 3, 4, and 5 mol% were studied. The excitation spectra and emission spectra of YAL3(BO3)4:Eu3+ phosphors were examined by fluorescent divide spectroscopy (FDS). The luminescent properties of YAL3(BO3)4:Eu3+ phosphors are discussion. The optimal doping concentration of Eu3+ ions in YAL3(BO3)4:Eu3+ phosphors was found to be approximately 3 mol%.  相似文献   

9.
This work presents a thermal decomposition study of the precursor resin prepared from the citrate precursor along with structural features and optical properties materials composed by Y2O3 and Eu3+ containing Y2O3 in 0.5, 3, 5 and 7 mol%. The microcrystallite sizes were estimated from the Scherrer equation. The structural and optical properties revealed that the addition of 5 mol% of Eu3+ to the Y2O3 matrix gave rise to the highest relative emission intensity which was evidenced by the luminescence intensity. The lifetime of the 0.5 mol% Eu3+-doped sample suggested two different symmetry sites for Eu3+ ions because two different lifetime values were acquired for this sample, while for phosphors doped with 3 or 5 mol% of Eu3+ ions only one similar lifetime was observed. When the concentration of Eu3+ is 0.5 and 3 mol%, the luminescence intensity is weak due to the low probability of the O2? - Eu3+ charge transfer transition. On the other hand, when the concentration of the Eu3+ ions is 7 mol%, a quenching effect is evidenced.  相似文献   

10.
Tricolor emission Ca2SiO4:Ln (Ln = Ce3+, Eu2+, Sm3+) phosphors were synthesized by the conventional solid-state reaction method, and their photoluminescence properties were investigated. Ce3+-, Eu2+-, or Sm3+-doped Ca2SiO4 phosphors showed typical blue, green, or red luminescence in the CIE1931 chromaticity diagram, respectively. In addition, the luminescence efficiency of the tricolor emission Ca2SiO4:Ln (Ln = Ce3+, Eu2+, Sm3+) phosphors was evaluated. A series of white light-emitting diode (LED) prototypes were fabricated by combining near-UV LED chip and the as-prepared tricolor emission phosphors with various ratios in weight. White LED prototypes with tunable correlated color temperature and color-rendering index values were realized by controlling the amount of phosphors. The presented results indicated the potential application of Ca2SiO4:Ln (Ln = Ce3+, Eu2+, Sm3+) phosphors in near-UV white LED.  相似文献   

11.
Thermally stimulated luminescence (TSL) investigations of SrBPO5:Eu3?+ and SrBPO5:Eu2?+ phosphors were carried out in the temperature range of 300–650 K. In order to characterize the phosphors, X-ray diffraction and photoluminescence (PL) techniques were used. The emission spectrum of air heated SrBPO5:Eu3?+ phosphor exhibited emission bands at 590, 614, 651 and 702 nm under 248 nm excitation, assigned to transitions of Eu3?+ ion. In phosphor prepared in reducing (Ar + 8% H2) atmosphere, a broad emission band due to Eu2?+ ranging from 350 to 400 nm was observed with 340 nm excitation. EPR studies have confirmed the presence of Eu2?+ ions in the samples prepared in reducing atmosphere. TSL glow curve of SrBPO5:Eu3?+ had shown intense peaks around 397, 510, 547 K and a weak peak around 440 K whereas in case of SrBPO5:Eu2?+ system, glow peaks at 414, 478 and weak peak at 516 nm were observed. The shift in TSL glow pattern can be attributed to stabilization of different oxidation states of the dopant ion in the host lattice. Apart from this, TSL trap parameters such as trap depth and frequency factor were determined. Spectral characteristics of TSL emission have shown that Eu3?+?/Eu2?+ ion acts as the luminescent centre in the respective phosphors.  相似文献   

12.
In this study, YPO4:Eu3+ microspheres with different Eu3+ dosage concentration were fabricated by a facile hydrothermal route at 200 °C for 10 h in the presence of citric acid. The YPO4:Eu3+ samples were characterized by X-ray powder diffraction (XRD), transmission electron microscopy (TEM), scanning electron microscopy (SEM), and luminescence spectroscopy. The XRD results reveal that the YPO4:Eu3+ samples presented a tetragonal structure. The TEM and SEM observations demonstrate that the YPO4:Eu3+ samples with uniform sphere-like morphologies can be obtained at 200 °C for 10 h. The sizes of samples are in the range of 2–2.2 μm. The room temperature luminescence properties of YPO4:Eu3+ samples were studied using an excitation wavelength of 227 nm. The emission spectrum displays the bands associated to the 5D0 → 7FJ (J = 1, 2 and 4) electronic transitions characteristics of the Eu3+ cations at different positions. The influence of Eu3+ dosage concentration on luminescence properties of YPO4:Eu3+ microspheres were studied carefully.  相似文献   

13.
This work first reports the synthesis and luminescence properties of rare earth Ce3+, Eu2+, Eu3+ ions doped β-Zn3BPO7 phosphors [β-Zn3BPO7:Ln (Ln = Ce3+, Eu2+, Eu3+)]. The phosphors were synthesized by a solid-state reaction at high temperature, and their luminescence properties were investigated by measuring the photoluminescence excitation and emission spectra. The f–d transitions of Ce3+ and Eu2+ ions in the host lattice are assigned and corroborated, which lead to the broad emission band in ultraviolet (UV) and visible region for Ce3+ and Eu2+ ions under UV excitation, respectively. Typical reddish orange emission from Eu3+ in the host lattice was also observed. The spectroscopic characteristics including Stokes shift, crystal field depression, electron–vibrational interaction, and charge transfer band were investigated and compared with that in other borophosphate phosphors. β-Zn3BPO7:Eu2+ and β-Zn3BPO7:Eu3+ phosphors show potential application in solid state lighting region.  相似文献   

14.
A series of Sr3La(PO4)3:Eu2+/Mn2+ phosphors were synthesized by a solid state reaction. The phase and the optical properties of the synthesized phosphors were investigated. The XRD results indicate that the doped Eu2+ and Mn2+ ions do not change the phase of Sr3La(PO4)3. The peak wavelengths of Eu2+ single doped and Eu2+/Mn2+ codoped Sr3La(PO4)3 phosphors shift to longer wavelength due to the larger crystal field splitting for Eu2+ and Mn2+. The increases of crystal field splitting for Eu2+ and Mn2+ are induced by the substitution of Sr2+ by Eu2+ and Mn2+ in Sr3La(PO4)3 host. Due to energy transfer from Eu2+ to Mn2+ in Sr3La(PO4)3:Eu2+/Mn2+ phosphors, tunable luminescence was obtained by changing the concentration of Mn2+. And the white light was emitted by Sr3La(PO4)3:3.0 mol%Eu2+/4.0 mol%Mn2+ and Sr3La(PO4)3:3.0 mol%Eu2+/5.0 mol%Mn2+ phosphors.  相似文献   

15.
In this work, Gd(P0.5V0.5)O4: x at.% Eu3+ phosphors with different dopant concentrations (x?=?1, 3, 5, 6, 7, 9) were synthesized through chemical coprecipitation method. The phosphors were characterized by XRD, SEM, infrared spectroscopy, photoluminescence excitation, emission spectra and CIE. The results of XRD indicate that the obtained phosphors have the tetragonal phase structure. Eu3+ emission transitions arise mainly from the 5D0 level to the 7FJ (J?=?0, 1, 2, 3, 4) manifolds. The emission intensity and crystalline of Gd(P0.5V0.5)O4:x at% Eu3+ powders are increasing with annealing temperature at 600, 800, 1000, 1100, and 1200 °C, respectively. The introduction of VO43? can broaden the range of UV excitation spectrum wavelength and enhance the transition between 5D0 → 7F1 to 5D0 → 7F2 for long wavelength emission. And the most dominant emission peak of Eu3+ for 5D0 → 7F2 transition is closer to pure red light at 622 nm. The maximum emission intensity of the phosphors is the concentration of 6 at.% Eu3+ because of the distance of the neighbor Eu3+ ions reaching a certain critical value and the influence of multipolar interaction. Compared to commercial phosphors Y2O3:Eu3+ and (Y,Gd)BO3:Eu3+, our work yielded a longer wavelength red light emission intensity and a higher proportion of red light to orange light. All our results indicate that color purity of this phosphor turns it into a promising red phosphor in ultraviolet-pumped light-emitting diodes.  相似文献   

16.
Y2O3:Eu3+ and ZnO·Y2O3:Eu3+ nanophosphor powders with different concentrations of Eu3+ ions were synthesized by a sol-gel method and their luminescence properties were investigated. The red photoluminescence (PL) from Eu3+ ions with the main emission peak at 612 nm was observed to increase with Eu3+ concentration from 0.25 to 0.75 mol% and decreased notably when the concentration was increased to 1 mol%. The decrease in the PL intensity at higher Eu3+ concentrations can be associated with concentration quenching effects. The red emission at 612 nm was shown to increase considerable when ZnO nanoparticles were incorporated in Y2O3:Eu3+ while green emission from ZnO was suppressed. The increase is attributed to energy transfer from ZnO to Eu3+.  相似文献   

17.
BaAl2O4:Eu2+,RE3+ (RE3+=Y, Pr) down conversion nanophosphors were prepared at 600 °C by a rapid gel combustion technique in presence of air using boron as flux and urea as a fuel. A comparative study of the prepared materials was carried out with and without the addition of boric acid. The boric acid was playing the important role of flux and reducer simultaneously. The peaks available in the XPS spectra of BaAl2O4:Eu2+ at 1126.5 and 1154.8 eV was ascribed to Eu2+(3d 5/2) and Eu2+(3d 3/2) respectively which confirmed the presence of Eu2+ ion in the prepared lattice. Morphology of phosphors was characterized by tunneling electron microscopy. XRD patterns revealed a dominant phase characteristics of hexagonal BaAl2O4 compound and the presence of dopants having unrecognizable effects on basic crystal structure of BaAl2O4. The addition of boric acid showed a remarkable change in luminescence properties and crystal size of nanophosphors. The emission spectra of phosphors had a broad band with maximum at 490–495 nm due to electron transition from 4f 65d 1 → 4f 7 of Eu2+ ion. The codoping of the rare earth (RE3+=Y, Pr) ions help in the enhancement of their luminescent properties. The prepared phosphors had brilliant optoelectronic properties that can be properly used for solid state display device applications.  相似文献   

18.
Ca3Bi(PO4)3:Eu3+ phosphors were synthesized by solid-state (SS) reaction, co-precipitation (CP) and sol–gel methods. The resulting phosphors were well characterized by X-ray diffraction, field-emission scanning electron microscopy and photoluminescence spectra. The X-ray diffraction results suggested that the pure phase of Ca3Bi(PO4)3:Eu3+ can be obtained by SS reaction and CP method. The phosphors obtained by CP method showed more homogeneous, agglomerate-free particles. The samples obtained by the CP method showed the highest emission intensity among the three methods which fired at 1,000 °C for 2 h. It was showed that the CP method was the most respected process for the preparation of Ca3Bi(PO4)3:Eu3+ phosphors.  相似文献   

19.
La3+ ions codoped Li2CaSiO4:Eu2+ phosphors were synthesized through the solid state reaction method. Large increases in the emission could be achieved by adding La3+ in the host. The optimum doping concentration expressed by the x value in Li2Ca0.99?xSiO4:0.01Eu2+, xLa3+ was determined to be of 0.01. X-ray diffraction patterns revealed that the samples maintained Li2CaSiO4 single phase after codoping Eu2+ and La3+. The excitation spectra of samples showed a broad absorption band ranging from 220 to 450 nm and the emission spectra excited at 375 nm showed the typical broad band of Eu2+ peaks at about 478 nm (4f65d1–4f7). The broad absorption band wavelength was found to be matched appropriately with the emission wavelength of commercially available blue LEDs. Fluorescent lifetime test results showed that the La3+ codoped could increase the excited state energy and prolong the lifetime of Eu2+. The optimization mechanism was studied in detail by the case of La3+ codoping. The temperature dependent luminescence measurements show that the thermal quenching remains small in the case of La3+ doping, in other word, La3+ codoped Li2CaSiO4:Eu2+ phosphor has a good thermal stability. These results provided a useful basis for further improving the luminescence performance of Li2CaSiO4:Eu2+ phosphors.  相似文献   

20.
Optically efficient terbium activated alkaline earth metal tungstate nano phosphors (AWO4 [A = Ca, Sr]) with different doping concentrations have been prepared by mechanochemically assisted solid state metathesis reaction at room temperature for the first time. The prepared phosphors were characterized by the X-ray diffraction (XRD), Fourier transform infrared (FTIR) spectroscopy, scanning electron microscope (SEM), Fourier transform Raman (FT-Raman) spectroscopy, photoluminescence and diffuse reflectance spectroscopy measurements. The XRD and Raman spectra results showed that the prepared powders present a scheelite-type tetragonal structure. FTIR spectra exhibited a high absorption band situated at around 850 cm?1, which was ascribed to the W–O antisymmetric stretching vibrations into the [WO4]2? tetrahedron groups and the SEM images reveal that the particle sizes were in the range of 20–60 nm. The excitation and the emission spectra were measured to characterize the luminescent properties of the phosphors. The excitation spectrum exhibits a charge transfer broad band along with some sharp peaks from the typical 4f–4f transitions of Tb3+. Under excitation of UV light, these AWO4:xTb3+ (A = Ca, Sr) phosphors showed a strong emission band centered at 545 nm (green) which corresponds to 5 D 4 → 7 F 5 transition of Tb3+. Analysis of the emission spectra with different Tb3+ concentrations revealed that the optimum dopant concentration for CaWO4:xTb3+ and SrWO4:xTb3+ phosphors are about 8 and 6 mol% of Tb3+. The green emission intensity of the solid state meta-thesis prepared CaWO4:0.08Tb3+ and SrWO4:0.06Tb3+ phosphors are 1.5 and 1.2 times greater than that of the commercial LaPO4:Ce, Tb green phosphor. All properties show that AWO4:Tb3+ (A = Ca, Sr) is a very appropriate green-emitting phosphor for fluorescent lamp applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号