首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
张金风  郝跃 《半导体学报》2006,27(2):276-282
观察了AlGaN/GaN HEMT器件在短期应力后不同栅偏置下的一组漏极电流瞬态,发现瞬态的时间常数随栅偏压变化很小,据此判断这组瞬态由电子陷阱的释放引起.为了验证这个判断,采用数值仿真手段计算了上述瞬态.分别考虑了在器件中不同空间位置的电子陷阱,分析了应力和瞬态中相应的陷阱行为,对比和解释了仿真曲线与测量结果的异同.基于上述讨论,提出测量的瞬态可能是表面深陷阱和GaN层体陷阱的综合作用的结果.  相似文献   

2.
Time constant spectra are extracted from current transients based on the Bayesian deconvolution and used to characterize traps in GaN high-electron mobility transistors. Two kinds of traps with different time constants in an actual device were identified in the AlGaN barrier layer and the GaN layer, respectively. In particular, the trapping process in the AlGaN barrier layer was identified at the region near the drain side under gate contact. Trapping mechanisms of both two traps are discussed. Additionally, we observe that the trap in the AlGaN barrier layer requires sufficient electric field to activate the trapping process and a high drain voltage (Vds) accelerates the trapping processes both in the AlGaN barrier layer and the GaN layer. In addition, detrapping experiments with different filling conditions were performed to confirm their spatial positions. The influence of self-heating is excluded during the experiment by keeping the power density at a very low level, and the trapping effect is the sole factor accounting for the current transients.  相似文献   

3.
A methodology based on combined electrical trapping analysis with UV-assisted preparation of trap states and electroluminescence analysis was developed to gain detailed understanding of trap generation in AlGaN/GaN HEMTs during off and on-state stress. This is used to identify electronic trap location laterally and vertically in a device structure and the nature of the degradation mechanism. We identify the generation of traps with activation energies in the range from 0.45 to 0.65 eV near the gate edge on its drain side in AlGaN/GaN HEMTs as electronic traps in the AlGaN device layer, as a result of on- and off-state stress. Degradation studied on devices subjected to stress under different backplate temperatures, points to diffusion processes playing an important role for early device degradation. Diffusion constants showed thermal activation energies of ∼0.26 eV consistent with diffusion processes along dislocations, with possible additional contributions from bulk diffusion accelerated by converse/inverse piezo-electric strain and leakage currents.  相似文献   

4.
Reliability of AlGaN/GaN HEMTs processed with different surface oxidation levels was studied using electrical and optical methods. It was found that HEMTs with more surface oxide content are more susceptible to degradation in terms of gate leakage and trapping characteristics, although this oxide layer initially passivates surface traps. In the degraded devices, trap level with activation energy of 0.45–0.47 eV was observed and attributed to surface related traps. This indicates that oxygen may play a crucial role for AlGaN/GaN HEMT reliability.  相似文献   

5.
Four different layer structures are used to study deep-level traps in AlGaN/GaN high-electron mobility transistors (HEMTs) by photo-ionization spectroscopy. The structures grown on sapphire substrates by metal-organic chemical vapor deposition show nearly identical Hall data. However, the direct current (DC) performance of HEMTs with identical geometry is found to differ strongly. In all structures investigated, two distinct defect levels, namely, at 2.84–2.94 eV and 3.24–3.28 eV, were found from the fits of the photo-ionization cross-sectional data. Additionally, different trap concentrations can be deduced. These are in good correlation with the different transconductance and drain current measured. It is assumed that the defect levels observed are related to the AlGaN surface.  相似文献   

6.
The surface band bending in undoped, Si-doped and Mg-doped GaN layers with Ga-face polarity as well as AlGaN/GaN heterostructures with Ga(Al)-face polarity has been investigated by room temperature contactless electroreflectance (CER) spectroscopy. The opposite phase of CER resonance (i.e., opposite band bendings) has been observed for n-type (undoped and Si-doped) and p-type (Mg-doped) GaN layers. It means that for thick GaN layers the surface band bending results not from crystal polarity but from the Fermi-level pinning at the surface and carrier type/concentration inside the layer. The crystal polarity can influence the surface band bending for thin (Al)GaN layers for which the screening phenomena can be neglected or are very weak. Such a situation is typical of AlGaN/GaN transistor structures where the thickness of AlGaN layer is below 40 nm. In this case, the strong internal electric field in AlGaN layer is manifested in CER spectra by a resonance with a long period Franz-Keldysh oscillation.  相似文献   

7.
In this work, we report on the growth by metalorganic vapor phase epitaxy (MOVPE) of GaN layers on AlN/Si(111) templates with step-graded AlGaN intermediate layers. First, we will discuss the optimization of the AlN/Si(111) templates and then we will discuss the incorporation of step-graded AlGaN intermediate layers. It is found that the growth stress in GaN on high-temperature (HT) AlN/Si(111) templates is compressive, although, due to relaxation, the stress we have measured is much lower than the theoretical value. In order to prevent the stress relaxation, step-graded AlGaN layers are introduced and a crack-free GaN epitaxial layer of thickness >1 μm is demonstrated. Under optimized growth conditions, the total layer stack, exceeding 2 μm in total, is kept under compressive stress, and the radius of the convex wafer bowing is as large as 119 m. The crystalline quality of the GaN layers is examined by high-resolution x-ray diffraction (HR-XRD), and the full-width-at-half maximums (FWHMs) of the x-ray rocking curve (0002) ω-scan and (−1015) ω-scan are 790 arc sec and 730 arc sec, respectively. It is found by cross-sectional transmission electron microscopy (TEM) that the step-graded AlGaN layers terminate or bend the dislocations at the interfaces.  相似文献   

8.
电流崩塌是目前GaN HEMT微波功率器件中最严重的问题之一,国内外都有研究,但尚无统一结论。通过实验,研究了GaN HEMT器件电流崩塌现象。研究表明,不同电应力条件下,导致漏电流崩塌和最大跨导下降的物理机制不同,在大电场应力下,主要物理机制是栅隧穿电子填充表面态;而在热电子应力下,是沟道热电子填充界面态。  相似文献   

9.
AlGaN/GaN HFET的2DEG和电流崩塌研究(Ⅰ)   总被引:1,自引:0,他引:1  
从不同的视角回顾和研究了A1GaN/GaN HFET的二维电子气(2DEG)和电流崩塌问题.阐述了非掺杂的AIGaN/GaN异质结界面存在2DEG的原动力是极化效应,电子来源是AlGaN上的施主表面态.2DEG浓度与AlGaN/GaN界面导带不连续性、AlGaN层厚和Al组分有密切关系.揭示了AlGaN/GaN HFET的2DEG电荷涨落受控于表面、界面和缓冲层中的各种缺陷及外加应力,表面空穴陷阱形成的虚栅对输入信号有旁路和延迟作用,它们导致高频及微波状态下的电流崩塌.指出由于构成电流崩塌因素的复杂性,各种不同的抑制电流崩塌方法都存在不足,因此实现该器件大功率密度和高可靠性还有很长的路要走.  相似文献   

10.
In AlGaN/GaN heterostructure field-effect transistors (HEMTs) structures, the surface defects and dislocations may serve as trapping centers and affect the device performance via leakage current and low frequency noise. This work demonstrates the effect of surface passivation on the current-voltage characteristics and we report results of our investigation of the trapping characteristics of Si3N4-passivated AlGaN/GaN HEMTs on SiC substrates using the conductance deep levels transient spectroscopy (CDLTS) technique. From the measured of CDLTS we identified one electron trap had an activation energy of 0.31 eV it has been located in the AlGaN layer and two hole-likes traps H 1, H 2. It has been pointed out that the two hole-likes traps signals did not originate from changes in hole trap population in the channel, but reflected the changes in the electron population in the surface states of the HEMT access regions.  相似文献   

11.
A set of different short term stress conditions are applied to AlGaN/GaN high electron mobility transistors and changes in the electronic behaviour of the gate stack and channel region are investigated by simultaneous gate and drain current low frequency noise measurements. Permanent degradation of gate current noise is observed during high gate reverse bias stress which is linked to defect creation in the gate edges. In the channel region a permanent degradation of drain noise is observed after a relatively high drain voltage stress in the ON-state. This is attributed to an increase in the trap density at the AlGaN/GaN interface under the gated part of the channel. It was found that self-heating alone does not cause any permanent degradation to the channel or gate stack. OFF-state stress also does not affect the gate stack or the channel.  相似文献   

12.
采用一个AlN缓冲层和两个Al组分阶变的AlGaN过渡层作为中间层,在76.2mm Si衬底上外延生长出1.7μm厚无裂纹AlGaN/GaN异质结材料,利用原子力显微镜、X射线衍射、Hall效应测量和CV测量等手段对材料的结构特性和电学性能进行了表征。材料表面平整光滑,晶体质量和电学性能良好,2DEG面密度为1.12×1013cm-2,迁移率为1 208cm2/(V.s)。由该材料研制的栅长为1μm的AlGaN/GaN HEMT器件,电流增益截止频率fT达到10.4GHz,这些结果表明组分阶变AlGaN过渡层技术可用于实现高性能Si基GaN HEMT。  相似文献   

13.
The leakage current suppression mechanism in AlGaN/GaN High Electron Mobility Transistors (HEMTs) is investigated. It is known that leakage current can cause severe reliability problems for HEMT devices and conventional AlGaN/GaN HEMT devices suffer from detrimental off-state drain leakage current issues, especially under high off-state drain bias. Therefore, a leakage current suppression technique featuring hybrid-Schottky/ohmic-drain contact is discussed. Through the 2-zones leakage current suppression mechanism by the hybrid-Schottky/drain metal including the shielding effect of the rough ohmic-drain metal morphology and the drain side electric field modulation, AlGaN/GaN HEMT featuring this novel technique can significantly enhance the leakage current suppression capability and improve the breakdown voltage. An analytical method using loop-voltage-scanning is proposed to illustrate the optimization procedure of the hybrid-Schottky/ohmic drain metallization on leakage current suppression. Through the comparison of the loop leakage current hysteresis of conventional ohmic drain HEMT and hybrid-Schottky/ohmic drain, the leakage current suppression mechanism is verified through the leakage current considering surface acceptor-like trap charging/discharging model. Device featuring the hybrid-Schottky/ohmic drain technique shows an improvement in breakdown voltage from 450 V (with no Schottky drain metal) to 855 V with a total drift region length of 9 μm, indicating enhanced off-state reliability characteristics for the AlGaN/GaN HEMT devices.  相似文献   

14.
Current collapses were studied,which were observed in AlGaN/GaN high electron mobility transistors(HEMTs) with and without InGaN back barrier(BB) as a result of short-term bias stress.More serious drain current collapses were observed in InGaN BB AlGaN/GaN HEMTs compared with the traditional HEMTs.The results indicate that the defects and surface states induced by the InGaN BB layer may enhance the current collapse.The surface states may be the primary mechanism of the origination of current collapse in AlGaN/GaN HEMTs for short-term direct current stress.  相似文献   

15.
石磊  冯士维  刘琨  张亚民 《半导体学报》2015,36(7):074005-5
研究了在AlGaN/GaN高电子迁移率晶体管的栅极施加阶梯电压应力之后器件参数和特性的自变化现象。在去除应力之后每5分钟测量一次器件。大信号寄生源(漏)电阻、转移特性、阈值电压、漏源电流、栅-源(漏)反向电流-电压特性在去除应力后发生自发变化。自变化的时间常数大约为25-27分钟。在该过程里,栅-源(漏)电容-电压特性保持稳定。当器件被施加应力时,电子被表面态和AlGaN势垒层陷阱捕获。AlGaN势垒层陷阱所捕获的电子在10秒内释放了出去。表面态释放电子持续发生在整个测量过程中,导致了测量结果的自变化现象。  相似文献   

16.
Very slow drain current and surface potential transients have been observed in AlGaN/GaN heterostructure field effect transistors that are subjected to high bias stress. Simultaneous measurements of drain current and surface potential indicate that large change in surface potential after stress is responsible for the reduction in drain current in these devices. Measurements of surface potential profile from the gate edge toward the drain as a function of time indicate that surface potential changes occur mostly near the gate. It is proposed that the surface potential changes are caused by electrons which tunnel from the gate under high bias stress and get trapped at the surface states near the gate. Passivation of the surface with SiN/sub x/ reduces the transient magnitudes to a large extent. This correlates with a large improvement in microwave power performance in these devices after passivation. UV illumination of these devices totally eliminates the drain current and surface potential transients.  相似文献   

17.
The structural properties and surface morphology of AlGaN/GaN structures grown on LiGaO2 (LGO), sapphire, and hydride vapor phase epitaxy (HVPE)-grown GaN templates are compared. AlGaN grown on LGO substrates shows the narrowest x-ray full width at half maximum (FWHM) for both symmetric 〈00.4〉 and asymmetric 〈10.5〉 reflections. Atomic force microscopy (AFM) analysis on AlGaN surfaces on LGO substrates also show the smoothest morphology as determined by grain size and rms roughness. The small lattice mismatch of LGO to nitrides and easily achievable Ga-polarity of the grown films are the primary reasons for the smoother surface of AlGaN/GaN structure on this alternative substrate. Optimizations of growth conditions and substrate preparation results in step flow growth for an AlGaN/GaN structure with 300 Å thick Al0.25Ga0.75N on 2.4 μm thick GaN. A high III/V flux ratio during growth and recently improved polishing of LGO substrates aids in promoting two dimensional step flow growth. The GaN nucleation layer directly on the LGO substrate showed no evidence of mixed phase cubic and hexagonal structure that is typically observed in the nucleation buffer on sapphire substrates. Cross-sectional high-resolution transmission electron microscopy (HRTEM) was performed on an AlGaN/GaN heterostructure grown on LGO. The atomic arrangement at the AlGaN/GaN interface was sharp and regular, with locally observed monolayer and bilayer steps.  相似文献   

18.
We have used low energy electron-excited nanoscale luminescence spectroscopy (LEEN) to detect the defects in each layer of AlGaN/GaN HEMT device structures and to correlate their effect on two-dimensional electron gas (2-DEG) confinement. We investigated AlGaN/GaN heterostructures with different electrical properties using incident electron beam energies of 0.5 to 15 keV to probe electronic state transitions within each of the heterostructure layers. AlGaN heterostructures of 25 nm thickness and nominal 30% Al concentration grown on GaN buffer layers on sapphire substrates by plasma-assisted molecular beam epitaxy exhibited a range of polarization-induced electron densities and room temperature mobilities. In general, the spectra exhibit AlGaN band edge emission at ~3.8 eV or ~4.0 eV, GaN band edge emission at ~3.4 eV, yellow luminescence (YL) features at 2.18 eV and 2.34 eV, and a large emission in the infrared (<1.6 eV) from the GaN cap layer used to passivate the AlGaN outer surface. These heterostructures also show high strain in the 2 nm-thick GaN layer with evidence for a Franz-Keldysh red shift due to piezoelectric charging. The LEEN depth profiles reveal differences between the structures with and without 2-DEG confinement and highlight the importance of AlGaN defects in the near 2-DEG region  相似文献   

19.
由于AlGaN/GaNHEMT的几何结构以及很强的极化效应,栅漏区域的电场很大,以至于电子可以从栅隧穿到AlGaN表面.隧穿的电子在表面累积,导致栅下耗尽区的电子向漏端延伸,从而引起漏极电流的下降.文中采用应力测试方法,研究了未钝化、钝化以及场板三种结构的AlGaN/GaNHEMT的电流崩塌程度.实验结果表明,钝化隔断了电子从栅隧穿到AlGaN表面的通道,场板结构能够有效降低栅边缘电场,均减少了电子从栅隧穿到表面陷阱的几率,从而使虚栅的作用减弱,有效地抑制了电流崩塌效应.  相似文献   

20.
段焕涛  郝跃  张进城 《半导体学报》2009,30(10):105002-3
Nucleation layer formation is a key factor for high quality gallium nitride(GaN)growth on a sapphire substrate.We found that the growth rate substantially affected the nucleation layer morphology,thereby having a great impact on the crystal quality,surface morphology and electrical properties of AlGaN/GaN heterostructures on sapphire substrates.A nucleation layer with a low growth rate of 2.5 nm/min is larger and has better coalescence than one grown at a high growth rate of 5 nm/min.AlGaN/GaN heterostructures on a nucleation layer with low growth rate have better crystal quality,surface morphology and electrical properties.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号