首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effects of NS 1619, a newly developed activator of large-conductance Ca2+-activated K+ channels, were investigated on single smooth muscle fibers dissociated enzymatically from rat vas deferens and on contractions of the epididymal half of vas deferens. K+ currents were recorded using whole-cell patch-clamp methods in near-physiological K+ solutions (5.4 mM extracellular K+/145 mM intracellular K+). When cell membrane voltage was stepped to test potentials (-60 to +60 mV) from a holding potential of -10 mV, NS 1619 increased the outwardly rectifying K+ current in a concentration-dependent manner. The increased portion of the K+ current by NS 1619 was totally abolished by charybdotoxin (100 nM) but not by glibenclamide (3 microM). NS 1619 reduced electrically stimulated contractile responses of rat vas deferens in a concentration-dependent manner, and charybdotoxin but not glibenclamide partially inhibited the effect of NS 1619. NS 1619 (50 microM) inhibited the noradrenaline-induced contraction. Charybdotoxin (100 nM) partially reduced the NS 1619-induced inhibition while glibenclamide (3 microM) had no effect. NS 1619 (10-100 microM) reduced the high K+-induced contractions in a noncompetitive manner. The present results indicate that NS 1619 activates charybdotoxin-sensitive Ca2+-activated K+ channels and probably inhibits Ca2+ influx. These two effects might account largely for the observed mechanical inhibition induced by NS 1619 in the epididymal half of isolated rat vas deferens.  相似文献   

2.
The action of sodium orthovanadate (Na3VO4) on spontaneous mechanical activity of the longitudinal muscle was investigated in isolated segments of rabbit distal ileum. Vanadate (0.3-1000 microM) concentration-dependently enhanced the amplitude of phasic contractions (pendular movements) and caused the muscle tone to slightly increase at the highest concentrations. Both these effects were mimicked by the Ca2+ channel activator BAY K 8644 (10-1000 nM). Vanadate- and BAY K 8644-induced potentiation of mechanical activity was antagonized by the Ca2+ entry blocker nifedipine (3 nM). In Ca(2+)-free, K(+)-depolarized preparations, vanadate (100 microM) failed to contract the musculature, but potentiated the contractile response to applied calcium (CaCl2: 30-300 microM). The action of vanadate was similar to that of BAY K 8644 (3 nM) and was antagonized by nifedipine (0.1 nM). These results suggest that extracellular calcium is required for vanadate-induced smooth muscle excitation which, at least in part, appears to arise from facilitation of calcium influx through voltage-dependent Ca2+ channels.  相似文献   

3.
Extracellular ATP is a broad-spectrum cytotoxic agent that produces effects via cell surface P2 purinoceptors. The ligand-gated P2X purinoceptor subtype has very high sequence homology with the RP-2 gene, which encodes for apoptosis. The P2X RNA found in rat vas deferens is expressed preferentially by apoptotic thymocytes. P2X purinoceptor-mediated phasic (twitch) motor responses of the isolated rat vas deferens to neurogenic or exogenous ATP were rapidly, specifically and irreversibly potentiated by bis(2-chloroethyl)sulfide (HD 10-100 microM). Both untreated and HD-potentiated neurogenic responses were Ca++ dependent, blocked in the absence of Ca++ plus 0.1 mM EGTA, by the neuronal Ca++ channel blocker omega-conotoxin-MVIIC (3 microM), by the P2 purinoceptor antagonist suramin (100 microM) and by tetrodotoxin (100 nM). HD also potentiated the effects of ATP on isolated guinea pig taenia caecum, where the nucleotide acts at G protein-coupled P2Y purinoceptor subtypes to cause relaxation. HD failed to inhibit the metabolism of ATP by ecto-ATPase in vas deferens or to cause the release of endogenous ATP. Potentiation of the twitch response to electric field stimulation by HD was attenuated or eliminated in tissues excised from rats previously challenged with topically applied HD, suggesting that HD absorbed into the systemic circulation had already effected maximal potentiation of ATP responses before in vitro testing. The physiological consequences of HD-induced potentiation of the extracellular actions of ATP are discussed in relation to apoptosis and necrosis.  相似文献   

4.
We investigated the effects of inhibitors of the sarcoplasmic reticulum (SR) functions on the tonic contractions induced by norepinephrine (NE) in the Ca(2+)-depleted Mn(2+)-loaded vas deferens of the guinea pig in the absence of both Ca2+ and Mn2+ (Mn(2+)-dependent NE-contraction). In control preparations without Ca(2+)-depletion and Mn(2+)-loading, either cyclopiazonic acid (CPA, 10 microM) or ryanodine (RYA, 3 microM) inhibited the initial phasic and tonic components but not the large phasic component of NE-induced contraction in normal medium containing 2.2 mM Ca2+. In contrast, CPA did not affect the Mn(2+)-dependent NE-contractions. The inhibitory effect of RYA slowly developed with each repetition of the Mn(2+)-dependent NE-contraction and the magnitude of the inhibition was slight. A23187 (10 microM) inhibited the NE-induced contractions of the control preparations in the same manner as CPA and RYA. Although A23187 did not induce contractions in the Mn(2+)-loaded preparations, A23187 augmented the Mn(2+)-dependent NE-contractions. The augmented tonic contractions returned to the resting level by washing NE and A23187. The augmentation remained for 3 successive contractions in the absence of A23187. However, the 2nd application of A23187 did not augment the contraction. These results suggest that neither Mn(2+)-release from SR nor Mn(2+)-influx from the extracellular space contributes to the Mn(2+)-dependent NE-contractions. We concluded that NE induces Mn(2+)-dependent contractions by increasing Mn2+ sensitivity of contractile processes but not by increasing intracellular Mn2+ concentration.  相似文献   

5.
1. The effects of adenosine receptor agonists upon both electrically-evoked and phenylephrine-induced contractile responses were investigated in the bisected vas deferens and the cauda epididymis of the guinea-pig. Electrical field-stimulation (10 s trains of pulses at 9 Hz, 0.1 ms duration, supramaximal voltage) elicited biphasic and monophasic contractile responses from preparations of bisected vas deferens and cauda epididymis, respectively; these responses were abolished by tetrodotoxin (300 nM). 2. In the prostatic half of the vas deferens the A1 selective adenosine receptor agonists, N6-cyclopentyladenosine (CPA) and (2S)-N6-[2-endo-norbornyl]adenosine ((S)-ENBA) and the non-selective A1/A2 adenosine receptor agonist, 5'-N-ethylcarboxamidoadenosine (NECA) inhibited electrically-evoked contractions (pIC50+/-s.e.mean values 6.15+/-0.24, 5.99+/-0.26 and 5.51+/-0.24, respectively). The responses to CPA were blocked by the A1 adenosine receptor antagonist, 8-cyclopentyl-1,3-dipropylxanthine, DPCPX (100 nM). 3. In the epididymal half of the vas deferens NECA potentiated (at < or = 100 nM) and inhibited (at > or = 1 microM) electrically-evoked contractions. In the presence of the non-selective alpha-adrenoceptor antagonist phentolamine (3 microM), the alpha1-adrenoceptor antagonist, prazosin (100 nM), or at a reduced train length (3 s) NECA inhibited electrically-evoked contractions (pIC50 values 6.05+/-0.25, 5.97+/-0.29 and 5.71 +/-0.27, respectively). CPA (at 10 microM) also inhibited electrically-evoked contractions in this half of the vas deferens. In the presence of prazosin (100 nM), CPA also inhibited electrically-evoked contractions (pIC50 6.14+/-0.67); this effect was antagonized by DPCPX (30 nM, apparent pK(B) 8.26+/-0.88). In the presence of the P2 purinoceptor antagonist, suramin (300 microM), CPA (up to 1 microM) potentiated electrically-evoked contractions. 4. NECA, CPA and APNEA potentiated electrically-evoked contractions in preparations of cauda epididymis (pEC50 values 7.49+/-0.62, 7.65+/-0.74 and 5.84+/-0.86, respectively), the response to CPA was competitively antagonized by DPCPX (100 nM) with an apparent pK(B) value of 7.64+/-0.64. 5. The alpha1-adrenoceptor agonist phenylephrine elicited concentration-dependent contractile responses from preparations of bisected vas deferens and cauda epididymis. NECA (1 microM) potentiated responses to phenylephrine (< or = 1 microM) in the epididymal, but not in the prostatic half of the vas deferens. In preparations of epididymis NECA (1 microM) shifted phenylephrine concentration response curves to the left (4.6 fold). In the presence of a fixed concentration of phenylephrine (1 microM), NECA elicited concentration-dependent contractions of preparations of the epididymal half of the vas deferens and of the epididymis (pEC50 values 7.57+/-0.54 and 8.08+/-0.18, respectively). NECA did not potentiate responses to ATP in either the epididymal half of the vas deferens or the epididymis. 6. These studies are consistent with the action of stable adenosine analogues at prejunctional A1 and postjunctional A1-like adenosine receptors. The prejunctional A1 adenosine receptors only inhibit the electrically-evoked contractions of purinergic origin (an effect predominant in the prostatic half of the vas deferens). At the epididymis, where electrically-evoked contractions are entirely adrenergic, the predominant adenosine receptor agonist effect is a potentiation of alpha1-adrenoceptor-, but not of ATP-induced contractility.  相似文献   

6.
1. The involvement of alpha 1-adrenoceptor subtypes in adrenergic neurogenic contractions of different type was studied in epididymal and prostatic portions of the rat vas deferens. 2. The adrenergic component of neurogenic contractions was isolated by suramin (300 microM). Twitch-like and tonic contractions were elicited by appropriate pulse patterns of electrical field stimulation, and contractions relying on intracellular calcium mobilization and calcium entry were isolated by means of nifedipine (10 microM) and ryanodine (20 microM), respectively. Increasing concentrations of 2-(2,6-dimethoxyphenoxyethyl)aminomethyl-1,4-benzodioxane (WB 4101), alpha-ethyl-3,4,5-trimethoxy-alpha-(3-((2-(2-methoxyphenoxy)ethyl)- amino)-propyl)benzeneacetonitrile (HV 723), prazosin and 5-methylurapidil progressively, monophasically and with potency decreasing in that order reduced and finally abolished all types of contraction, with one exception: concentration-effect curves of 5-methylurapidil in epididymal segments in the presence of ryanodine levelled off at about 75% inhibition. In the presence of both nifedipine (10 microM) and ryanodine (20 microM), contractions were abolished. 3. Contractions elicited by exogenous noradrenaline were also studied in the presence of either nifedipine 10 microM (prostatic segments) or ryanodine 20 microM (epididymal segments). Increasing concentrations of tamsulosin, WB 4101, benoxathian, HV 723, prazosin, 5-methylurapidil and urapidil progressively, monophasically and with potency decreasing in that order reduced and eventually abolished both kinds of contraction, with two exceptions: in epididymal segments in the presence of ryanodine, the concentration-effect curve of 5-methylurapidil was biphasic and the curve of urapidil levelled off at only partial inhibition. 4. In slices prepared from the prostatic end and preincubated with [3H]-noradrenaline, WB 4101, HV 723, prazosin and 5-methylurapidil, at the highest concentrations tested against neurogenic contractions, increased only slightly the overflow of tritium elicited by trains of 50 pulses at 5 Hz. 5. It is concluded that two alpha l-adrenoceptor subtypes mediate adrenergic neurogenic contractions of rat vas deferens. The main one, pharmacologically alpha 1A, activates both calcium mobilization and entry. In addition there is a second receptor, not previously detected in the vas deferens and not corresponding to any named alpha l subtype, characterized by high and similar affinity for tamsulosin, WB 4101, benoxathian,HV 723 and prazosin and very low affinity for 5-methylurapidil and urapidil, and linked exclusively to calcium entry. Both subtypes and their respective transduction pathways also contribute to contractions elicited by exogenous noradrenaline. An alpha 1B-adrenoceptor-mediated contraction was not found under any experimental conditions.  相似文献   

7.
1. The effects of ryanodine, procaine, and N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide (W-7) on noradrenaline (NA)- and caffeine-induced contractions of human vas deferens were investigated. 2. In the presence of nifedipine (1 microM), NA ( 100 microM) evoked biphasic contractions. Caffeine (20 mM) evoked repeatable tonic contractions. 3. Ryanodine (30 microM) inhibited the initial but not the secondary component of NA contractions. Procaine (1 and 10 mM) inhibited both components. Contractions induced by caffeine were unaffected by ryanodine or procaine. 4. The calmodulin antagonist W-7 (100 microM) reduced, in a reversible manner, both components of NA-induced response. Caffeine-induced contractions were also reduced in most preparations (8 of 11). In all preparations, contractions induced by caffeine were markedly inhibited after the washout of W-7. Higher doses of W-7 (300 microM) induced an increase in basal tension. 5. These results indicate that NA contracts the longitudinal muscle of human vas deferens by a ryanodine-sensitive calcium-induced calcium release (CICR) mechanism and, in addition, a ryanodine-insensitive pathway: both are sensitive to procaine. In contrast, contraction induced by caffeine is mediated by a pathway that is atypically insensitive to either ryanodine or procaine. The sensitivity of NA- and caffeine-induced contraction to W-7 suggests a role for calcium and its interaction with calmodulin in the response to both agents. The paradoxical action of W-7 is discussed.  相似文献   

8.
1. The block by ifenprodil of voltage-activated Ca2+ channels was investigated in intracellular free calcium concentration ([Ca2+]i) evoked by 50 mM K+ (high-[K+]o) in Fura-2-loaded rat hippocampal pyramidal neurones in culture and on currents carried by Ba2+ ions (IBa) through Ca2+ channels in mouse cultured hippocampal neurones under whole-cell voltage-clamp. The effects of ifenprodil on voltage-activated Ca2+ channels were compared with its antagonist actions on N-methyl-D-aspartate- (NMDA) evoked responses in the same neuronal preparations. 2. Rises in [Ca2+]i evoked by transient exposure to high-[K+]o in our preparation of rat cultured hippocampal pyramidal neurones are mediated predominantly by Ca2+ flux through nifedipine-sensitive Ca2+ channels, with smaller contributions from nifedipine-resistant, omega-conotoxin GVIA-sensitive Ca2+ channels and Ca2+ channels sensitive to crude funnel-web spider venom (Church et al., 1994). Ifenprodil (0.1-200 microM) reversibly attenuated high-[K+]o-evoked rises in [Ca2+]i with an IC50 value of 17 +/- 3 microM, compared with an IC50 value of 0.7 +/- 0.1 microM for the reduction of rises in [Ca2+]i evoked by 20 microM NMDA. Tested in the presence of nifedipine 10 microM, ifenprodil (1-50 microM) produced a concentration-dependent reduction of the dihydropyridine-resistant high-[K+]o-evoked rise in [Ca2+]i with an IC50 value of 13 +/- 4 microM. The results suggest that ifenprodil blocks Ca2+ flux through multiple subtypes of high voltage-activated Ca2+ channels. 3. Application of the polyamine, spermine (0.25-5 mM), produced a concentration-dependent reduction of rises in [Ca2+]i evoked by high-[K+]o. The antagonist effects of ifenprodil 20 micro M on high-[K+]0-evoked rises in [Ca2+]. were attenuated by spermine 0.25 mM but not by putrescine 1 or 5 mM. In contrast,spermine 0.1 mM increased rises in [Ca2+]i evoked by NMDA and enhanced the ifenprodil (5 micro M) block of NMDA-evoked rises in [Ca2+]i.4. Similar results were obtained in mouse cultured hippocampal pyramidal neurones under whole-cell voltage-clamp. Ifenprodil attenuated both the peak and delayed whole-cell IB. with an IC% value of 18 +/- 2 micro M, whilst it attenuated steady-state NMDA-evoked currents with an IC50 of 0.8 +/- 0.2 micro M. Block of IBa by ifenprodil 10 JaM was rapid in onset, fully reversible and occurred without change in thecurrent-voltage characteristics of Ba. The ifenprodil block of IBa was enhanced on membrane depolarization and was weakly dependent on the frequency of current activation. Spermine 0.1 mM potentiated control NMDA-evoked currents but attenuated IB,. In agreement with the microspectrofluorimetric studies, co-application of spermine produced a small enhancement of the inhibitory effect of ifenprodil 10 micro M on NMDA-evoked responses whereas the reduction of I4 by ifenprodil 10 micro M in the presence of spermine was less than expected if the inhibitory effects of ifenprodil and spermine on IBa were simply additive.5. The results indicate that ifenprodil blocks high voltage-activated Ca2+ channels in rat and mouse cultured hippocampal pyramidal neurones. Although the Ca2+ channel blocking actions of ifenprodil are observed at higher concentrations than those associated with NMDA antagonist activity, Ca2+ channel blockade may contribute, at least in part, to the established neuroprotective and anticonvulsant properties of the compound.  相似文献   

9.
A possible interaction of salmon-calcitonin with opioid systems was studied in isolated tissues. Neurogenic contractions were elicited by electrical stimulation in guinea-pig ileum myenteric plexus-longitudinal muscle strips, rabbit vas deferens and mouse vas deferens. Bremazocine inhibited neurogenic contractions in all three tissues (presumably through kappa-receptors) [D-Pen2, D-Pen5]enkephalin and [Met5]enkephalin inhibited contractions in mouse vas deferens (presumably through delta-receptors), and [D-Ala2, N-Me-Phe4, Gly5-ol]enkephalin (DAMGO) inhibited contractions in guinea-pig ileum and mouse vas deferens (presumably through mu-receptors). All inhibitory effects were concentration-dependent. Salmon-calcitonin 0.1 IU/ml increased the effect of bremazocine in guinea-pig ileum and rabbit vas deferens and also increased the effects of [D-Pen2, D-Pen5]enkephalin and [Met5]enkephalin in mouse vas deferens. In contrast, salmon-calcitonin up to 0.4 IU/ml did not change the effect of bremazocine in mouse vas deferens and the effect of DAMGO in guinea-pig ileum and mouse vas deferens. It is concluded that salmon-calcitonin enhances agonist effects at opioid kappa- and delta- but not at opioid mu-receptors. The level of this interaction remains to be elucidated. The interaction may be the basis of the analgesic effect of salmon-calcitonin in vivo.  相似文献   

10.
1. The aim of the present study was to identify the sources of Ca2+ contributing to acetylcholine (ACh)-induced release of endothelium-derived hyperpolarizing factor (EDHF) from endothelial cells of rat mesenteric artery and to assess the pathway involved. The changes in membrane potentials of smooth muscles by ACh measured with the microelectrode technique were evaluated as a marker for EDHF release. 2. ACh elicited membrane hyperpolarization of smooth muscle cells in an endothelium-dependent manner. The hyperpolarizing response was not affected by treatment with 10 microM indomethacin, 300 microM NG-nitro-L-arginine or 10 microM oxyhaemoglobin, thereby indicating that the hyperpolarization is not mediated by prostanoids or nitric oxide but is presumably by EDHF. 3. In the presence of extracellular Ca2+, 1 microM ACh generated a hyperpolarization composed of the transient and sustained components. By contrast, in Ca(2+)-free medium, ACh produced only transient hyperpolarization. 4. Pretreatment with 100 nM thapsigargin and 3 microM cyclopiazonic acid, endoplasmic reticulum Ca(2+)-ATPase inhibitors, completely abolished ACh-induced hyperpolarization. Pretreatment with 20 mM caffeine also markedly attenuated ACh-induced hyperpolarization. However, the overall pattern and peak amplitude of hyperpolarization were unaffected by pretreatment with 1 microM ryanodine. 5. In the presence of 5 mM Ni2+ or 3 mM Mn2+, the hyperpolarizing response to ACh was transient, and the sustained component of hyperpolarization was not observed. On the other hand, 1 microM nifedipine had no effect on ACh-induced hyperpolarization. 6. ACh-induced hyperpolarization was nearly completely eliminated by 500 nM U-73122 or 200 microM 2-nitro-4-carboxyphenyl-N, N-diphenylcarbamate, inhibitors of phospholipase C, but was unchanged by 500 nM U-73343, an inactive form of U-73122. Pretreatment with 20 nM staurosporine, an inhibitor of protein kinase C, did not modify ACh-induced hyperpolarization. 7. These results indicate that the ACh-induced release of EDHF from endothelial cells of rat mesenteric artery is possibly initiated by Ca2+ release from inositol 1,4,5-trisphosphate (IP3)-sensitive Ca2+ pool as a consequence of stimulation of phospholipid hydrolysis due to phospholipase C activation, and maintained by Ca2+ influx via a Ni(2+)- and Mn(2+)-sensitive pathway distinct from L-type Ca2+ channels. The Ca(2+)-influx mechanism seems to be activated following IP3-induced depletion of the pool.  相似文献   

11.
To determine whether functional Ca2+ channels are present in vestibular dark cells, changes in intracellular Ca2+ concentration ([Ca2+]i) due to K+ applications were measured using the Ca(2+)-sensitive dye (fura-2) and patchclamp whole-cell recordings were made in dark cells isolated from the ampullae of the semicircular canal of the guinea pig. Exchange of the external solution with a buffer medium containing a high K+ concentration (80 mM K+ or 150 mM K+) caused a concentration-dependent increase in [Ca2+]i in vestibular dark cells. Application of 1 microM nifedipine as a Ca2+ channel antagonist completely blocked the increase in [Ca2+]i. Further treatment with 10 microM BAY K 8644 as a Ca2+ channel agonist caused an increase in [Ca2+]i. In the patch-clamp whole-cell recordings a 1-s depolarizing pulse given into the dark cell in the presence of a high barium concentration (50 mM Ba2+) induced an inward current. In determining the current-voltage relationship, a current was detected at a potential that depolarized at-50 mV and was maximal at +10 mV. This inward current was completely blocked by 1 mM La3+ as a Ca2+ channel antagonist. These findings suggest the presence of voltage-dependent Ca2+ channels in dark cells, which have a presumed function in the regulation of [Ca2+]i in the vestibular endolymph.  相似文献   

12.
We evaluated whether cartilage was a source of Ca2+ and the possible role of Ca2+ recycling in the sustained bronchial contraction (SBC) induced by carbachol (Cch) in Ca2+-free medium. Canine first-order bronchi were studied with cartilage and epithelium (+CAR + EPI) and without these structures individually (-CAR + EPI and +CAR - EPI) or together (-CAR - EPI). After cartilage removal (-CAR - EPI or -CAR + EPI) Cch produced a transient contraction in Ca2+-free medium. Removal of the epithelium alone had minor effects on the magnitude of the SBC but increased the effect of removal of cartilage to diminish the SBC. Bronchial strips with cartilage were able to respond to Cch with lower Ca2+ concentrations (10-100 microM) than could dissected preparations. Preincubation with BAY K 8644 (30-1000 nM) or 60 mM KCl or -CAR - EPI tissues converted the transient contractions to Cch in Ca2+-free medium to sustained contractions. In microelectrode studies, 50 nM Cch induced membrane oscillations in solutions with 2.5 mM Ca2+ in bronchial preparations, plus or minus cartilage, and in undissected tissues in Ca2+-free medium but not in -CAR - EPI tissues. Preincubation with 1 microM BAY K 8644 in Ca(2+)-free medium restored these oscillations in -CAR - EPI tissues. The release of 45Ca2+ from cartilage was too rapid to provide a reservoir of Ca2+ to support multiple SBCs in Ca2+-free medium. Moreover, in the Ca2+-free medium (with 10 nM Ca2+ after tissue +CAR + EPI incubation) excitatory junction potentials rapidly disappeared. Addition of 1 microM nifedipine or 1 mM EGTA during the SBC of +CAR + EPI tissues produced complete relaxation. A transient contraction to Cch occurred with prior addition of nifedipine. Inhibition of the sarcoplasmic reticulum Ca2+ pump by tissue incubation with cyclopiazonic acid (CPA; 10 microM), or briefly with 1 mM EGTA significantly diminished the SBC induced by Cch in Ca2+-free medium. CPA and EGTA together abolished the Cch-induced SBC. Thus, cartilage plays a more complex role than as a Ca2+ reservoir to support the SBC induced by Cch in Ca2+-free solution; its removal affects the process supporting SBCs involving intracellular Ca2+ storage and Ca2+ entrance through voltage-dependent channels.  相似文献   

13.
We observed endothelin (ET)-induced contractile responses on prostatic and epididymal segments, as well as the facilitation of an electrically stimulated tone on prostatic segments of isolated rat vas deferens. In both segments, the selective ET(B)-receptor agonists, IRL 1620 and sarafotoxin S6c, produced only a small contraction or no contraction at a concentration of 1 microM. The rank order of contraction potencies (pD2 value) was ET-1 = ET-2 > ET-3 > sarafotoxin S6c = IRL 1620. The maximum responses of ET-induced contractions in the prostatic segments were larger than those in the epididymal segments. The contractile response to ET-3 was antagonized by pretreatment for 30 min with BQ-123 (10 nM), a selective ET(A) receptor antagonist, and BQ-788 (1 microM), a selective ET(B) receptor antagonist. The contractile responses to ET-1 were antagonized by pretreatment with BQ-123 (10 microM), but not with BQ-788 (1 microM). The ET-3-induced facilitation on the twitch response to electrical stimulation in the prostatic segment of the vas deferens was antagonized by BQ-123 (0.1 microM) and BQ-788 (1 microM). The ET-1-induced facilitation was antagonized by pretreatment with BQ-123 (3 microM), but not with BQ-788 (10 microM). These results suggest that in rat vas deferens the ET(A) receptors are divided into BQ-123-sensitive ET(A1) and BQ-123-insensitive ET(A2) subtypes, and the production of a contractile response of smooth muscle as well as the facilitation of neurotransmission are accomplished through mediation by ET(A1)- and ET(A2)-subtypes.  相似文献   

14.
1. The effects of a series of structurally-dissimilar sigma site ligands were examined on high voltage-activated Ca2+ channel activity in two preparations of cultured hippocampal pyramidal neurones. 2. In mouse hippocampal neurones under whole-cell voltage-clamp, voltage-activated Ca2+ channel currents carried by barium ions (IBa) were reduced with the rank order (IC50 values in microM): 1S,2R-(-)-cis-N-methyl-N-[2-(3,4-dichlorophenyl)ethyl]- 2-(1-pyrrolidinyl)cyclohexylamine (7.8) > rimcazole (13) > haloperidol (16) > ifenprodil (18) > opipramol (32) > carbetapentane (40) = 1-benzylspiro[1,2,3,4-tetrahydronaphthalene-1,4-piperidine] (42) > caramiphen (47) > dextromethorphan (73). At the highest concentrations tested, the compounds almost abolished IBa in the absence of any other pharmacological agent. 3. The current-voltage characteristics of the whole-cell IBa were unaffected by the test compounds. The drug-induced block was rapid in onset and offset, with the exceptions of carbetapentane and caramiphen where full block was achieved only after two to three voltage-activated currents and was associated with an apparent increase in the rate of inactivation of IBa. 4. In rat hippocampal neurones loaded with the Ca(2+)-sensitive dye Fura-2, rises in intracellular free Ca2+ concentration evoked by transient exposure to 50 mM K(+)-containing medium, either in the absence or in the presence of 10 microM nifedipine (to block L-type high voltage-activated Ca2+ channels), were also reversibly attenuated by the sigma ligands. The rank order potencies for the compounds in these experimental paradigms were similar to that observed for blockade of IBa in the electrophysiological studies. 5. These results indicate that, at micromolar concentrations, the compounds tested block multiple subtypes of high voltage-activated Ca2+ channels. These actions, which do not appear to be mediated by high-affinity sigma binding sites, may play a role in some of the functional effects previously described for the compounds.  相似文献   

15.
The effects of mercuric chloride (HgCl2) and methyl mercury (MeHg) were examined on basal mechanical activity and electrically-induced neurogenic cholinergic contractions (twitch contractions) in longitudinal muscle-myenteric plexus strips from guinea-pig distal ileum. Both compounds at 0.33 microM slightly enhanced the amplitude of twitch contractions in approximately 50% preparations. This effect was probably due to facilitation of acetylcholine (ACh) release since 0.1 and 1 microM mercurials increased electrically-evoked tritium outflow from [3H]choline preloaded muscle layer with attached myenteric plexus. Conversely, higher mercury concentrations inhibited twitch contractions (HgCl2 IC50 = 21.3 +/- 6.4 microM; MeHg IC50 = 45.1 +/- 5.5 microM), as well as contractions to exogenous ACh (0.1 microM) in resting preparations, and concomitantly increased the basal tone. The former effects possibly reflected an antimuscarinic activity of mercury, while the latter was related to alterations of calcium homeostasis in the effector cells. Indeed, the effect of HgCl2 on basal tone was antagonized by the Ca2+ entry blocker nifedipine (3, 10, 30 nM), indicating Hg-induced facilitation of Ca2+ influx through voltage-dependent channels. On the whole, our results suggest that cholinergic neuromuscular transmission and Ca(2+)-dependent mechanisms underlying smooth muscle contractility are targets for mercury toxicity in the intestine.  相似文献   

16.
Trichosporin (TS) -B-VIa, a fungal alpha-aminoisobutyric acid (Aib) -containing peptide consisting of 19 amino acid residues and a phenylalaninol, produced both 45Ca2+ influx into bovine adrenal chromaffin cells and catecholamine secretion from the cells. The secretion induced by TS-B-VIa at lower concentrations (2-5 microM) was completely dependent on the external Ca2+, while that induced by TS-B-VIa at higher concentrations (10-30 microM) was partly independent of the Ca2+. The concentration-response curves (2-5 microM) for the TS-B-VIa-induced Ca2+ influx and secretion correlated well. The TS-B-VIa (at 5 microM) -induced secretion was not antagonized by diltiazem, a blocker of L-type voltage-sensitive Ca2+ channels. The treatment of fura-2-loaded C6 glioma cells with TS-B-VIa (2-5 microM) led to an increase in the intracellular free Ca2+ concentration ([Ca2+]i) in a concentration-dependent manner but the stimulatory effects of TS-B-VIa on [Ca2+]i were only slightly observed in Ca(2+)-free medium, indicating that TS-B-VIa causes Ca2+ influx from the external medium into the C6 cells. The TS-B-VIa-induced increase in [Ca2+]i in the C6 cells was not antagonized by diltiazem and by SK&F 96365, a novel blocker of receptor-mediated Ca2+ entry. High K+ increased neither [Ca2+]1 in the C6 cells nor Mn2+ influx into the cells, while TS-B-VIa increased Mn2+ influx. Also in other non-excitable cells, bovine platelets, similar results were obtained. These results strongly suggest that the mechanism of Ca2+ influx by TS-B-VIa at the lower concentrations is distinct from the event of Ca2+ influx through receptor-operated or L-type voltage-sensitive Ca2+ channels in both excitable cells (the chrornaffin cells) and non-excitable cells (the C6 cells and the platelets) and that TS-B-VIa per se may form Ca(2+)-permeable ion channels in biological membranes. On the other hand, the peptide at the higher concentrations seems to damage cell membranes.  相似文献   

17.
Previous studies have suggested that postjunctional supersensitivity of the vas deferens is due in part to altered electrophysiological properties, the sensitivity of the muscle being increased to any agonist which initiates contraction by means of depolarizing the cell membrane. Results of the present study indicate that altered electrical properties are not the only postjunctional changes which can account for the enhanced response. Dose-response curves for stimulant agonists were obtained in isolated vasa deferentia which were depolarized by a K-rich, Na-free solution. Chronic denervation resulted in a 2- to 3-fold displacement of the dose-response curve for norepinephrine to the left of control. Cocaine (10-(5)M) did not potentiate the response to norepinephrine of the innervated, depolarized smooth muscle. Supporting the contention that the supersensitivity of the depolarized tissue is postjunctional in nature was the finding that the denervated vas deferens was supersensitive to methoxamine, an agent which is not taken up by the neuronal amine transport system. Pretreatment of rats with reserpine (1.0 mg/kg/day for 5-7 days) also produced supersensitivity of the depolarized vas deferens. The increased maximal response to drugs of the denervated rat vas deferens which is observed in normally polarized tissues is absent in depolarized tissues suggesting that the phenomenon of increased maximum requires the existence of a membrane potential in order to be manifest. The denervated vas deferens, but not the vas deferens from reserpine-pretreated animals, exhibits an increase in the duration of drug-induced contractions. This effect occurs in both normal and depolarizing salt solutions suggesting that the change which leads to this phenomenon differs from those alterations which lead to postjunctional supersensitivity and to the enhanced maximal response.  相似文献   

18.
The present study explored the role of different sub-types of voltage-activated Ca2+ channels (VACCs) in mediating veratridine-evoked [3H]dopamine (DA) release from rat striatal slices. The release of [3H]DA evoked by veratridine (25 microM) decreased by 50.6+/-2.9% (n=8) in the absence of calcium and was completely abolished by 1 microM tetrodotoxin. The L-type Ca2+ channel blockers nifedipine (10 microM), nitrendipine (10 microM), diltiazem (10 microM) and verapamil (10 microM) did not modulate this release. Similarly, [3H]DA release was affected neither by the N-type VACC blocker omega-conotoxin-GVIA (1 microM) nor by the selective P-type channel blockers omega-agatoxin-IVA and omega-agatoxin-TK at low nM concentrations (30 nM), indicating no involvement of N- and P-type Ca2+ channels. In contrast, higher concentrations of omega-agatoxin-IVA that would also inhibit Q-type VACCs, blocked the release of [3H]DA by 27.9+/-8.1% (n=5) and 37.5+/-13.6% (n=3) at 0.3 and 1 microM, respectively. In addition, application of the Q-type Ca2+ channel blocker omega-conotoxin-MVIIC (0.01-3 degrees M) reduced [3H]DA release in a concentration-dependent manner, with maximum inhibition of 35.3+/-4.1% at 3 microM (n=5). On the basis of these results, it is concluded that the Ca2+ channels that participate in veratridine-evoked [3H]DA release are Q-type Ca2+ channels.  相似文献   

19.
Activin, a member of the transforming growth factor-beta superfamily, regulates various physiological functions. In the present study, we investigated the effect of activin on neuronal differentiation, particularly the functional activity of voltage-dependent Ca2+ channels, in murine neuroblastoma C1300 cells. A slight K(+)-induced increase in the intracellular free Ca2+ ([Ca2+]i) was observed in C1300 cells untreated and treated with either activin A or all-trans-retinoic acid, while treatment with both agents significantly enhanced the increase. The [Ca2+]i increases potentiated by activin A and all-trans-retinoic acid were nearly abolished in the presence of 1.0 mM nickel or in the absence of extracellular Ca2+. Nifedipine (0.1 microM) and omega-conotoxin (1.0 microM), inhibitors of L- and N-type Ca2+ channels, respectively, partially inhibited these responses, however the inhibitory effects of these compounds were not additive. In addition, Bay K 8644, an activator of L-type Ca2+ channels, enhanced the K(+)-induced [Ca2+]i increase. These findings indicated that depolarization evoked the Ca2+ influx, at least in part, through L-type Ca2+ channels in C1300 cells treated with both activin A and all-trans-retinoic acid.  相似文献   

20.
The Drosophila melanogaster genes, transient receptor potential (trp) and transient receptor potential-like (trpl) encode putative plasma membrane cation channels TRP and TRPL, respectively. We have stably co-expressed Drosophila TRPL with a Drosophila muscarinic acetylcholine receptor (DM1) in a Drosophila cell line (S2 cells). Basal Ca2+ levels measured using Fura-2/AM in unstimulated S2-DM1-TRPL cells were low and indistinguishable from untransfected cells, indicating that the TRPL channels were not constitutively active in this expression system. Activation of DM1 receptor in S2-DM1-TRPL cells by 100 microM carbamylcholine induced Ca2+ release from an intracellular Ca2+ pool followed by a Gd(3+)-insensitive Ca2+ influx. Pretreatment of S2-DM1-TRPL cells with 10 microM atropine abolished Gd(3+)-insensitive Ca2+ influx triggered by carbamylcholine, but the response was not blocked by prior incubation with pertussis toxin. TRPL channels could also be reliably activated by bath application of 1 microM thapsigargin for 10 min or 100 nM thapsigargin for 60 min in Ca(2+)-free solution. In some cells, TRPL channels activated by thapsigargin could further be activated by carbamylcholine. The findings suggest that, when stably expressed in the S2 cell line, TRPL may be regulated by two distinct mechanisms: (i) store depletion; and (ii) stimulation of DM1 receptor via pertussis-toxin insensitive G-protein (or the subsequent activation of PLC), but without further requirement for Ca2+ release.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号