首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The sulfidation behavior of Ni-Mo alloys containing up to 40 wt.% Mo was studied at =0.01 atm. over the temperature range of 550–800°C. The alloys included two solid solutions (Ni-10Mo and Ni-20Mo), the single-phase intermetallic compound Ni4Mo(Ni-29Mo), and two alloys which were two-phase, Ni-30Mo and Ni-40Mo (Ni4Mo+Ni3Mo). The sulfidation of all alloys followed the parabolic rate law. The rate of sulfidation decreased with increasing amounts of Mo. Activation energies for sulfidation gave values of 39.1±1.0 kcal/mol. The sulfide scales were bilayered, consisting of an outer layer nickel sulfide (NiS1+x and Ni3S2) and an inner, complex layer of MoS2 plus intermetallic particles. The rate-controlling step of the sulfidation for the alloys was inward sulfur diffusion and/or outward nickel diffusion through the inner MoS2 layer. Neither selective sulfidation nor internal sulfidation were observed. No significant difference in the sulfidation kinetics, sulfide structure, and scale constitution could be noted between single-phase alloys and two-phase alloys. The location of the markers was the interface between the inner and outer layers, indicating that the inner layer formed by inward diffusion of sulfur, and the outer layer grew by outward nickel diffusion. The inability to form a continuous protective molybdenum sulfide layer is discussed in terms of the structure of MoS2 and changes caused by intercalation of Ni into the layered crystal structure. The decrease in sulfidation rate with increasing Mo was attributed to increasing amounts of the intermetallic compound. The increasing volume fraction of particles decreased the available diffusion area in the inner layer and provided a blocking effect.  相似文献   

2.
The corrosion of Fe-Mo alloys containing up to 40 wt.% Mo was studied over the temperature range 600–980C in a H2/H2O/H2S mixture having a sulfur pressure of 10–5 atm. and an oxygen pressure of 10–20 atm. at 850C. All alloys were two-phase, consisting of an Fe-rich solid solution and an intermetallic compound, Fe3Mo2. The scales formed on Fe-Mo alloys were bilayered, consisting of an outer layer of iron sulfide (FeS) and of a complex inner layer whose composition and microstructure were a function of the reaction temperature and of the Mo content of the alloys. No oxides formed under any conditions. The corrosion kinetics followed the parabolic rate law at all temperatures. The addition of Mo caused only a slight decrease of the corrosion rate. Platinum markers were always located at the interface between the inner and outer scales, indicating that outer scale growth was primarily due to outward diffusion of iron, while the inner scale growth had a contribution from inward diffusion of sulfur.  相似文献   

3.
The corrosion behavior of two Ni-Al alloys and four Ni-Nb-Al alloys was studied over the temperature range of 600° C to 1000° C in a mixed-gas of H2/H2O/H2S. The parabolic law was generally followed, although linear kinetics were also observed. Multiple-stage kinetics were observed for the Ni-Al alloys. Generally, the scales formed on Ni-13.5Al and Ni-Nb-Al alloys were multilayered, with an outer layer of nickel sulfide with or without pure Ni particles and a complex inner scale. The outer scale became porous and discontinuous with increasing temperature. Very thin scales formed on Ni-31Al. The reduction in corrosion rate with increasing Al content is ascribed to the formation of Al2O3 and Al2S3 in the scale. Platinum markers were found at the interface between the outer and inner scales.  相似文献   

4.
The corrosion behavior of Co alloyed with up to 40 wt.% Mo alloys was studied in H2-H2O-H2S gas mixtures over the temperature range between 600C and 900C. The parabolic rate constants for corrosion decreased with increasing amounts of Mo. The compositions of all gas atmospheres fall in the sulfide(s stability region of the ternary M-O-S phase diagrams at all temperatures investigated. All the corrosion scales were composed of sulfides, while no oxide was detected. The sulfide scales formed were duplex at all temperatures except at 900C. The outer layer consisted primarily of cobalt sulfide, while the inner layer was complex and heterophasic, the phases formed being highly composition dependent. MoS2 predominated in the inner layer for all alloys. However, a metallic Mo layer was formed in the innermost layer of Co-40 Mo. Activation energies were different for all alloys, increasing with increasing Mo content. Identical kinetics were observed for Co-30Mo corroded at 700–800C. A Chevrel-phase Co1.62Mo6S8 was present in scales formed on the samples exhibiting the temperature-independent kinetics. A possible model in which Co1.62Mo6S8 forms preferentially in H2-containing mixed gas is suggested. Alloys corroded at 900C formed a lamellar-structure scale which contained Co and CoMo2S4 layers perpendicular to the alloy surface. A eutectoid decomposition of an unknown Co-Mo sulfide may be responsible for the presence of the lamellar structure.  相似文献   

5.
The corrosion behavior of Ni-Nb alloys containing up to 40 wt.% Nb was studied over the temperature range of 550–800°C in a mixed H2/H2O/H2S gas. The scales formed on all alloys were multilayered. The outer scale was single-phase Ni3S2, while the structure and constitution of the inner scale depended on alloy composition and reaction conditions. Internal oxidation has been found in Ni-20Nb and Ni-30Nb, external oxidation has been observed on Ni-34Nb. Platinum markers were located at the interface between the outer scale and inner scale. The decrease in corrosion rate with increasing Nb content may be attributed to the presence of increasing amounts of Ni-Nb double sulfides as well as to the presence of Nb2O5 in the inner region of the scale.  相似文献   

6.
The corrosion behavior of eight Fe-Nb-Al ternary alloys was studied over the temperature range 700–980°C in H2/H2O/H2S atmospheres. The corrosion kinetics followed the parabolic rate law for all alloys at all temperatures. The corrosion rates were reduced with increasing Nb content for Fe-x Nb -3Al alloys, the most pronounced reduction occurred as the Nb content increased from 30 to 40 wt.%. The corrosion rate of Fe-30Nb decreased by six orders of magnitude at 700°C and by five orders of magnitude at 800°C or above by the addition of 10 wt.% aluminum. The scales formed on low-Al alloys (3 wt.% Al) were duplex, consisting of an outer layer of iron sulfide (with Al dissolved near the outer-/inner-layer interface) and an inner complex layer of FexNb2S4(FeNb2S4 or FeNb3S6), FeS, Nb3S4 (only detected for Nb contents of 30 wt.% or higher) and uncorroded Fe2Nb. No oxides were detected on the low-Al alloys after corrosion at any temperature. Platinum markers were found to be located at the interface between the inner and outer scales for the low-Al alloys, suggesting that the outer scale grew by the outward transport of cations (Fe and Al) and the inner scale grew by the inward transport of sulfur. The scales formed on high-Al alloys (5 wt.% Al) were complex, consisting primarily of Nb3S4, Al2O3 and (Fe, Al)xNb2S4, and minor amounts of (Fe, Al)S and uncorroded intermetallics (FeAl and Fe2Nb). The formation of Nb3S4 and Al2O3 blocked the transport of iron through the inner scale, resulting in the significant reduction of the corrosion rates.  相似文献   

7.
The sulfidation behavior of five Ni-Mo-Al ternary alloys and two Ni-Al binary alloys was studied over the temperature range 600–800°C in sulfur vapor of 10–2 atm. The effect of sulfur pressure was also investigated at and10–4 atm. using two Ni-Mo-Al alloys. The sulfidation of all Ni-Mo-Al andNi-Al alloys followed the parabolic rate law. The sulfidation rate decreasedwith increasing Al content for a given Mo content for Ni-Mo-Al alloys. Twobinary alloys, Ni-13.5Al and Ni-31Al, sulfidized at comparable rates toNi-30Mo-7.5Al, which has excellent sulfidation resistance. The activationenergies for ternary alloys range from 44.8–50.8 kcal/mol, whereas those forNi-13.5Al and Ni-31Al are 41.5 and 39.1 kcal/mol, respectively. Complexscales formed on all Ni-Mo-Al alloys, consisting of an outer layer of nickelsulfide and an inner layer of MoS2, A12S3, and Al0.55Mo2S4. Sulfide scalesformed on Ni-Al alloys were bilayered, consisting of an outer layer of nickelsulfide and an inner layer of A12S3. The low sulfidation rate of the ternaryalloys was attributed to the combined presence of both A12S3 and Al0.55Mo2S4.The sulfidation kinetics of two Ni-Mo-Al alloys are independent of sulfurpressure, suggesting that the growth of the inner layer was the dominant process.  相似文献   

8.
The corrosion behavior of 11 Fe-Mo-Al ternary alloys was studied over the temperature range 700–980°C in H2/H2O/H2S mixed-gas environments. With the exception of Fe-10Mo-7Al, for which breakaway kinetics were observed at higher temperatures, all alloys followed the parabolic rate law, despite two-stage kinetics which were observed in some cases. A kinetics inversion was observed for alloys containing 7 wt.% Al between 700–800°C. The corrosion rates of Fe-20Mo and Fe-30Mo were found to be reduced by five orders of magnitude at all temperatures by the addition of 9.1 or higher wt.% aluminum. The scales formed on low-Al alloys (5 wt.% Al) were duplex, consisting of an outer layer of iron sulfide (with some dissolved Al) and a complex inner of Al0.55Mo2S4, FeMo2S4, Fe1.25Mo6S7.7, FeS, and uncorroded FeAl and Fe3Mo2. Platinum markers were always located at the interface between the inner and outer scales for the low-Al alloys, indicating that outer-scale growth was due mainly to outward diffusion of cations (Fe and Al), while the inner scale was formed primarily by the inward flux of sulfur anions. Alloys having intermediate Al contents (7 wt.%) formed scales that consisted of FeS and Al2O3. The amount of Al2O3 increased with increasing reaction temperature. The high-Al-content alloys (9.1 and 10 wt.%) formed only Al2O3 which was responsible for the reduction of the corrosion rates.  相似文献   

9.
Fe-30Mo alloys containing up to 9.1 wt% Al were sulfidized at 0.01 atm sulfur vapor over the temperature range of 700–900°C. The sulfidation kinetics followed the parabolic rate law for all alloys at all temperatures. For alloys containing small and intermediate amounts of Al (<4.8 wt.%), a duplex sulfide scale formed. The outer layers of the scales were found to be relatively compact FeS in all cases; whereas the inner layers were composed of the layered compound MoS 2 (intercalated with iron), the Chevrel compound Fe x Mo 6 S 8,a spinel double sulfide Al x Mo 2 S 4,depending on the Al content of the alloy and the sulfidation temperature. Extremely thin scales were found on the alloys with higher Al contents. Accordingly, extremely slow sulfidation rates were observed—even slower than the sulfidation rate of pure Mo. The transition of the sulfidation kinetics from a high-rate active mode to a low-rate passive mode requires both a critical Al content in the alloy and a critical Mo content. Because of the two-phase nature of the alloys, the latter requirement implies a critical volume fraction of the intermetallic second-phase in the alloy, which has been known as the multiphase effect. Interestingly, the multiphase effect in these alloys was also a function of the Al content in the alloys.  相似文献   

10.
The corrosion behavior of seven Ni-Mo-Al alloys was investigated over the temperature range of 600–950°C in a mixed-gas atmosphere of H 2/H 2O/H 2 S. The parabolic law was followed at low temperatures, while linear kinetics were generally observed at higher temperatures. At a fixed Mo content, the transition from parabolic to linear kinetics shifted to higher temperature with increasing Al concentration. Double-layered scales generally formed on alloys having a low Al content, consisting of an outer layer of nickel sulfide and a complex inner scale. The thickness of the outer scale and the inner scale decreased as the Al content increased. The outer scale became porous and discontinuous with increasing Al content and temperature. Al 2 O 3 was detected in the scales of all alloys corroded at higher temperatures ( 800°C), even though the amount of Al 2 O 3 was very small in some cases. The decrease in corrosion rate with increasing Al content may be attributed to the formation of Al 2 O 3,Al 0.55 Mo 2 S 4,and Al 2 S 3 in the inner scale.  相似文献   

11.
Five ternary additions, Cr, Ti, Mn, V, and Al were studied at equi-atomicpercent levels (17 a/o) for their effect on the sulfidation behavior of Ni-19a/o Mo (28–30 w/o) over the range of 600–800°C in 0.01 atm S2. Al was by far the most effective addition. A linear decrease in log kp vs. Al content was observed up to 7.5w/o Al, beyond which no further change was observed. All alloys followed the parabolic rate law. Arrhenius plots gave activation energies of 36.9–41.2 Kcal/mol for alloys containing Ti, Cr, Mn, and V, whereas the activation energies for Al-containing alloys were 47.2 Kcal/mol, indicating that a different diffusion process was involved. Complex scales were formed on all alloys, consisting of an outer layer of Nis1+x and complex inner layers which depended upon alloy composition. Two alloys, those with Cr and Mn, formed intermediate layers of Cr2S3 and MnS, respectively, but these layers had little effect on the kinetics. MoS2 was a constituent of the inner scales except for the alloys with Al. A ternary sulfide, Al0.55Mo2S4 and Al2S3 were observed. The presence of the mixed sulfide was always associated with the low sulfidation rates. The formation of MoS2 on alloys results in a different, less-protective behavior than for MoS2 formed on pure Mo. This effect is due to the intercalation of Ni into MoS2 in octahedral positions between the weakly bonded layers of covalently bonded sheets of trigonal prisms. The size of Al+3 is too small to be intercalated, and thus MoS2 is destabilized by Al.  相似文献   

12.
Kai  W.  Lee  C. H.  Lee  T. W.  Wu  C.-H. 《Oxidation of Metals》2001,56(1-2):51-71
The high-temperature sulfidation behavior of the cast nickel-base superalloy Inconel 738 (IN-738) was studied over the temperature range 500–900°C in pure sulfur vapor over the range 102–104 Pa. The sulfidation kinetics followed the parabolic rate law in all cases. The sulfidation rates increased with increasing temperature and sulfur pressure. The scales formed were bilayered and temperature-dependent. At T700°C, the outer scale consisted of mostly NiS (with dissolved Co) and minor (CoS2 and NiCo2S4, while the inner layer was a heterophasic mixture of NiS, NiCo2S4, and minor amounts of Al2S3 and chromium sulfide (Cr2S3/Cr3S4). At T750°C, the outer scale consisted of mostly Ni3S2 (with dissolved Co) and minor amounts of Co3S4 and Cr2S3/Cr3S4, while the inner layer was a complex, heterophasic mixture of Ni3S2, Cr2S3/Cr3S4, CoCr2S4, and minor Al2S3. Platinum markers were found to be located at the interface between the inner and outer scales, suggesting that the outer scale grew by the outward transport of cations and the inner scale grew by the inward transport of sulfur. The formation of Al2S3 and Cr2S3/Cr3S4 partly blocked the transport of cations through the inner scale and consequently reduced the sulfidation rates as compared to pure nickel.  相似文献   

13.
The sulfidation properties of Ni-Nb alloys containing additions of niobium up to 40 wt.% have been studied at atm over the temperature range 550-700 °C. The sulfidation reactions followed the parabolic rate law; the sulfidation rates decreased with increasing amounts of niobium. An Arrhenius plot of the rate constants gave activation energies of 25.0+3.5 kcal/ mole. The scales formed on Ni-Nb alloys were multilayered, generally consisting of an outer layer of nickel sulfide ( NiS1+x and Ni3S2) and an inner complex layer of NiNb3S6 plus NbS2. The position of the original metal surface was notedy platinum-wire marker experiments to be the interface between the inner andouter layers. The location of the marker indicates that the outer layer, generally greater in thickness than the inner layer, grew by outward diffusion of the nickel cations, and the inner layer formed probably by the inward diffusion of sulfur. Neither preferential sulfidation nor internal sulfidation was observed. The development of the scale structures from the transient stage to steady state was also studied.  相似文献   

14.
The corrosion behavior of pure Nb and three Nb Al alloys containing 12.5, 25, and 75 at.% Al was studied over the temperature range of 800–1000°C in a H2/H2S/H2O gas mixture. Except for the Nb-12.5Al alloy consisting of a two phase structure of -Nb and Nb3Al, other alloys studied were single phase. The corrosion kinetics followed the parabolic rate law in all cases, regardless of temperature and alloy composition. The parabolic rate constants increased with increasing temperature, but fluctuated with increasing Al content. The Nb-75Al alloy exhibited the best corrosion resistance among all alloys studied, whose corrosion rates are 1.6–2.2 orders of magnitude lower than those of pure-Nb (depending on temperature). An exclusive NbO2 layer was formed on pure Nb, while heterophasic scales were observed on Nb-Al alloys whose compositions and amounts strongly depended on Al content and temperature. The scales formed on Nb-12.5Al consisted of mostly NbO2 and minor amounts of Nb2O5, NbS2, and -Al2O3, while the scales formed on Nb-25Al consisted of mostly Nb2O5 and some -Al2O3. The scales formed on Nb-75Al consisted of mostly -Al2O3 and Nb3S4 atT 900°C, and mostly -Al2O3 , Nb3S4 and some AlNbO4 at 1000°C. The formation of -Al2O3 and Nb3S4 resulted in a significant reduction of the corrosion rates.  相似文献   

15.
The sulfidation behavior of Co-Mo alloys containing up to 40 wt.% Mo was studied over the temperature range 600–900°C in both 10–2 and 10–4 atm. sulfur vapor. All of the alloys were two-phase, with the alloys containing up to 30Mo consisting of Co3Mo plus solid-solution Co, and the Co-40Mo alloy consisting of the two intermetallic compounds, Co3Mo and Co7Mo6. The sulfide scales which formed were duplex, with an outer layer of cobalt sulfide and a complex, heterophasic inner layer whose phases were both composition- and temperature-dependent. The parabolic rate constant for the sulfidation kinetics decreased with increasing Mo content at all temperatures investigated. Three activation energies, all different from that of pure Co, were observed. Furthermore, Co-30Mo exhibited a kinetics inversion between 800 and 850°C. This inversion was largely the result of the formation of an innermost layer of Co1.62Mo6S8 at the high temperatures. Specifically, the presence of this sulfide in the inner scale caused a significant decrease in the growth rate of the outer layer of cobalt sulfide. In fact, formation of a more compact, innermost layer of Co1.62Mo6S8 at 900°C compared to that at 850°C resulted in a negative activation energy for the growth of the cobalt sulfide in this temperature range. The variation in the activation energies was due to both the duplex nature of the scales which formed and the phase constitution of the inner scale. A simple model has been developed to explain the changes in the activation energies. At 800°C the sulfidation rate of the Co-Mo alloys was essentially the same at the two sulfur pressures studied. The predominant phase in the inner layer of Co-10Mo and Co-20Mo was CoMoS3, while for Co-30Mo and Co-40Mo it was MoS2. However, in the case of the latter alloys, Co1.62Mo3S4 formed in the region of the alloy/scale interface at temperatures 850°C and above. Although the MoS2, which had formed on Co-40Mo, appeared to be a continuous layer, it was in fact found to be relatively nonprotective. Platinummarker experiments revealed the position of the original metal surface to be the interface between the inner and outer scales.  相似文献   

16.
The effect of molybdenum additions 5, 10, 15, and 20 wt. %, on the sulfidation behavior of Ni-20Cr, and the effect of chromium additions, 5, 10, 15, and 20 wt.%, on the sulfidation of Ni-20Mo were studied in pure sulfur vapor at 700°C. In general, the alloys followed a linear or near-linear rate law, the sulfidation rate of Ni-20Mo being slightly less than that of Ni-20Cr. The alloys having the lowest ternary addition, e.g., Ni-Cr-5Mo and Ni-20Mo-5Cr. exhibited the most rapid reaction rates. The highest alloying additions of 20 wt.% had no appreciable benefit on reaction rates. Scale structures were complex but generally consisted of several layers. The outer layer was always NiS1.03, although both binaries formed Ni3S2 within the NiS1.03. An inner layer of Cr3S4 existed in which there was considerable dissolved molybdenum. A thin, intermediate layer of Cr2S3 generally formed between the Cr3S4 and the outer nickel sulfide. An innermost layer of MoS2 formed on all alloys containing more than 10 wt. % Mo, and a second phase of Mo2S3 formed within the MoS2 on Ni-20Mo. Although the scales changed with alloy composition, no significant changes in reaction rate were observed. Notable differences in both scale structure and reaction kinetics between this study and previous studies were apparent. The differences and possible reaction mechanisms are discussed.  相似文献   

17.
Chen  Yisheng  Young  D. J.  Blairs  S. 《Oxidation of Metals》1993,40(5-6):433-460
The sulfidation behavior of multiphase, iron-based alloys containing up to 24 a/o molybdenum, up to 16.3 a/o manganese, and up to 24 a/o aluminum was examined in flowing H 2 /H 2 S gases, corresponding to a sulfur partial pressure of 4 Pa, at 800° C. An accelerated sulfidation rate was almost invariably observed on the quaternary alloys, but slow linear kinetics were found for Fe-22Mo-17Al. This behavior is due to the different products of the preferentially-attacked ferrite phase. If FeAl2S4 formed over the ferrite phase, the sulfur-incorporation rate into the scale was slowed down and accordingly the alloys had excellent protection, whereas formation of a MnS+FeS+MoS2 mixture led to poor protection or breakdown of a protective scale. The nature of the ferrite reaction products was determined by the ferrite composition, which can vary widely. The molybdenum-rich R-phase and AlMo3 reacted with sulfur slowly. When a protective preferential-sulfidation zone formed, the unreacted intermetallic phases provided a mechanical framework for FeAl2S4.  相似文献   

18.
The sulfidation behavior of Co-Nb alloys containing up to 30wt.% Nb was studied in sulfur vapor at a pressure of 0.01 atm in the temperature range of 600–700°C. Increasing niobium content decreased the sulfidation rate, following the parabolic rate law. An activation energy of 25.6 kcal/mole was obtained for Co-10Nb, Co-20Nb, and Co-25Nb, while a value of 20.5 kcal/mole was found for Co-30Nb. All were two-phase alloys, consisting of solid solution -Co and the intermetallic compound, NbCo3. The two-phase alloys formed a rather thick outer layer of cobalt sulfides and a heterophasic inner layer that was complex. The inner layer always contained the mixed sulfide CoNb2S4 which, depending on the alloy composition, coexisted with cobalt sulfide, NbS2, and / or NbCo3 particles. Short-time sulfidations showed that the solid solution initially sulfidized rapidly to form nodules of cobalt sulfide, whereas the NbCo3 phase formed a thin protective layer of NbS2. The nodules grew laterally until they coalesced into the continuous, outer thick layer, while the NbS2 completely or partially reacted with the cobalt sulfide to form CoNb2S4. Platinum markers were always found at the interface between the inner and outer scales, the location of the original metal surface.  相似文献   

19.
The chemical composition, defect structure, and diffusion in nickel sulfide -Ni3S2 have been investigated in H2S-H2 mixtures containing between 1 and 65% H2S between 560 and 700°C. Gravimetric, density, and X-ray studies were carried out. In the thermodynamically stable compound the ratio of Ni/S varied between 1.3 and 1.75. The X-ray examination showed a step change in the lattice parameter at the Ni/S ratio 1.4. A linear dependence of the density values (between 5.5 and 6.2 g/cm3) on the composition was observed. On the basis of the chemical composition and density measurements the number of nickel and sulfur atoms in 1 cm3 were determined. It has been shown that the Ni3S2 phase is defected in both anion and cation sublattices and that its chemical formula may be described as follows: Ni3±yS2x, where y 2x. It has been found that in the mixture containing 10% H2S the process of defect formation is determined by their diffusion in the sulfide. The temperature dependence of the diffusion coefficient is described by the equation D = 13.15 exp(-30,000/RT) cm2/sec. No dependence of D on the sulfur partial pressure was observed, but this may be due to the relatively large uncertainties in the measurement of the diffusion coefficients.  相似文献   

20.
The sulfidation behavior of Co-Mo-X alloys, where X is Al, Cr, Mn, or Ti, has been studied over the temperature range 600 or 700°C to 900°C in 10–2 atm. sulfur vapor to determine the effectiveness of the various ternary elements at reducing the sulfidation rate relative to Co-Mo alloys. For comparative purposes, each ternary alloy contained a constant atomic proportion (i.e., 55Co, 20Mo, and 25X). All of the alloys were multiphase, and sulfidized to form complex, multilayered scales. The scales usually consisted of an outer layer of cobalt sulfide, an intermediate layer that contained primarily the ternaryelement sulfide, and an inner layer which was heterophasic. Usually, each phase within the multiphase alloy sulfidized independently of one another. In the region of the alloy/scale interface there was often a narrow band of fine porosity (transitional band) together with fine precipitates that separated the inner sulfide from the base alloy. It was found that Al and Cr improved the sulfidation resistance of the Co-Mo binary alloy, whereas Mn had the opposite effect. The Ti-containing alloy underwent a mixed sulfidation/oxidation process, so that its kinetics were inapplicable. Aluminum was found to exert the most beneficial effect. The sulfidation behavior of Co-Mo-Al alloys containing a range of Al concentrations was studied at both 700 and 900°C. It was found that for Al to be effective, a sufficient amount of the spinel, Al0.55Mo2S4, had to form within the inner portion of the scale.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号