首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 171 毫秒
1.
双工质并联型联合循环热电冷三联产总能系统的研究   总被引:3,自引:0,他引:3  
赵敬德  朱华  刘妮  严建华  岑可法 《动力工程》2002,22(3):1808-1811
该文将并联型联合循环和三联产技术相结合,提出了综合利用能源的新思路,并对HAT循环和STIG循环构成的热电冷三联产总能系统进行了研究和比较,得出了有关并联型联合循环热电冷三联产总能系统的一些有用的结论。图5参5  相似文献   

2.
热电冷三联供综合经济分析   总被引:3,自引:0,他引:3  
利用当量热力系数分析了热电冷三联供的经济效益,比较了热电冷三联供系统中吸收式制冷机组和常规空调电制冷机组的一次能源消耗,分析表明三联供不仅节能,而且可增加发电量,有利于环境保护。  相似文献   

3.
热电冷三联供系统的节能分析   总被引:6,自引:0,他引:6  
付林  江亿 《节能》1999,(9):3-7
热电冷三联供系统节能性问题在国内学术界仍存在争论。本文重新计算了被许多文献引用的当量热力系数,并在此基础上阐述对热电冷三联供系统节能性的认识。  相似文献   

4.
简要介绍了热电冷三联供优越性和存在的经营风险,分析了在南京铁路南站地区实施热电冷三联供项目的必要性和优越性,提出了实施项目需要的政策支持。对该地区实现热电冷三联供项目有一定的引导性。  相似文献   

5.
叙述了热电冷三联产系统的特点及优势,针对各种不同类型的三联产系统,诸如生物质热电冷三联产系统、垃圾热电冷三联产系统以及太阳能热电冷三联产系统等进行了系统分析,指出尽管热电冷三联产系统存在一定的技术问题,但是该系统具有良好的社会和经济效益,并且符合国家的有关政策规定,有必要进行进一步的开发.  相似文献   

6.
热电冷联产应用分析   总被引:1,自引:0,他引:1  
利用当量热力系数分析了热电冷三联供的经济效益,比较了热电冷三联供系数中吸收式制冷机组和常规空调也制冷机组的一次能源消耗,分析表明三联供不仅节能,而且可增加发电量,有利于环境保护。  相似文献   

7.
冷-热-电三联供系统可实现能量的高效梯级利用,有利于实现“碳达峰、碳中和”。基于穷举搜索法构建了一套包含燃气热电联产系统、燃气锅炉、电制冷机、吸收式制冷机和水-水换热器的楼宇级冷-热-电三联供系统,并以北京3种典型的楼宇建筑为研究对象,研究了冷-热-电三联供系统在不同类型负荷下的容量配置、系统运行参数、经济性和减排情况并进行相应敏感性分析。结果表明:与分产系统相比,商业建筑、办公建筑、居住建筑的成本节约率分别为21.76%、16.72%和9.17%,二氧化碳减排率分别为15.80%、10.42%和4.41%,系统能源价格分别下降39.85%、49.04%和41.29%;研究结果可为冷-热-电三联供系统优化提供参考。  相似文献   

8.
一、前言 热电联供或热电冷三联供是一种先进的供能系统,其特点是能提高一次能源利用率、实现能量分级利用,并能按用户不同的要求进行设备工况灵活组态,在计算机系统的支持下构成智能化的供能网络。因而近年来这类系统一直受到世界各国动力界的青睐并多次成为国际能源会议的中心议题之一。  相似文献   

9.
发展热、电、冷三联供提高系统总能利用率   总被引:5,自引:0,他引:5  
金晶  冯明志 《节能》1996,(11):6-8
分析论证了热电联产经济性的限制条件和热电冷三联供的可行性  相似文献   

10.
本文主要介绍热电冷三联供概况及系统组成特点,并作了一些初步技术经济分析,认为国内技术基础已成熟,指出采用总能系统及其优化技术是设计三联供系统的关键。建议开发应用。  相似文献   

11.
分布式冷热电联产系统的能量梯级利用率新准则   总被引:1,自引:0,他引:1  
分布式冷热电联产系统评价准则对系统集成开拓与设计优化至关重要,传统的热效率、火用效率等难以全面科学地评估多供能系统性能特性,也不适于作为联产系统设计优化的目标函数。文章概述了目前常用的评价准则及其存在问题,基于热力学基本方程和联产系统的本质特征,提出了能量梯级利用率的评价准则。新准则从发电、制冷及供热等过程耗用能量的品位和生产产品的品质等来全面权衡不同能量转换利用过程的本质差异,并借助权重系数来综合量化描述。还结合实际的联产系统算例,对新准则和原有的评价准则进行比较分析。研究表明,该准则应用简便、合理、准确,为冷热电联产系统集成开拓与设计优化提供了一个更好的新准则。  相似文献   

12.
为节约及合理利用能源,提高城市能量总能系统利用率,基于有机朗肯循环(ORC)和冷热电联产(CCHP),提出了一种新型的城市低温地热冷热电联产系统(以下简称ORC-CCHP系统)。根据热力学第一、第二定律,建立了热力学模型,编写计算机程序进行了系统的热力性能分析。结果表明:采用R245fa、LiBr溶液作为ORCCCHP系统循环工质时,选择窄点温差较小蒸发器可获得更高火用效率;增加太阳能集/蓄热系统,提高热流参数,减小换热温差,可进一步提升系统热力学性能;系统分别采用5种不同有机工质时,R236fa使系统的热力性能达到最佳,并在蒸发压力为0. 62 MPa、窄点温差为0 K时,ORC-CCHP系统获得最大净输出功为1 948 kW,系统火用效率为19. 28%,系统火用效率最高值为85. 78%。  相似文献   

13.
用有限时间热力学理论研究恒温热源条件下由一个内可逆闭式布雷顿热机循环和一个内可逆四热源吸收式制冷循环组成的高炉余能余热驱动的热电冷联产装置的火用经济性能,导出热电冷联产装置的利润率和火用效率与压气机压比的关系。利用数值计算,分析热电比和吸收式制冷循环总放热量在吸收器和冷凝器之间的分配率对利润率与火用效率关系的影响,并研究联产装置各种参数对最大利润率及相应火用效率特性的影响。  相似文献   

14.
何晓红  蔡睿贤  苟晨华 《节能》2008,27(3):16-18,37
简介内燃机冷热电联产系统的发展现状,总结了发电用内燃机在设计点工况下主要参数的现有分布范围:排气温度约为450~600℃,排气流量基本上与额定功率呈线性关系,发电效率一般在33%~45%。对联产系统不同形式的能量输出、联产系统经济效率等进行分析研究,表明联产系统回收的能量主要来自排气和冷却水,排气回收能量一般高于冷却水回收能量。与热电联产系统相比,由于制冷比供热困难,冷热电联产系统的经济效率较高。  相似文献   

15.
An innovative CCHP system based on SOFC/GT/CO2 cycle and the organic Rankine cycle (ORC) with LNG cold energy utilization is proposed to achieve cascade energy utilization and carbon dioxide capture. The mathematical models are developed and the system performance is analyzed using the energy and exergy methods. The results illustrate that the comprehensive energy utilization, the net power generation and the overall exergy efficiencies of the system can reach about 79.48%, 79.81% and 62.29%, respectively, while the power generation efficiency of the SOFC is 50.96% and the CO2 capture rate of the proposed CCHP system is 79.2 kg/h under the given conditions. It shows that the proposed CCHP system can reach a high energy utilization efficiency with near zero emissions. The influence of some key parameters, such as the fuel utilization factor, the air-fuel ratio, the oxygen concentration in the cathode feed and the compression ratio of the SCO2 turbine on the performance of the entire system is studied.  相似文献   

16.
韩晓利  卢玫  杨茉 《节能》2011,(2):27-30
从能分析和火用分析两方面对热电冷联产系统的热经济性进行计算和分析,采用等效发电效率、等效发电火用效率与发电煤耗三种评价方法,以找出能量利用的薄弱环节,提高能源利用效率。  相似文献   

17.
Operation mode of combined cooling heating and power (CCHP) system determines its energetic and environmental performances. This paper analyzes the energy flows of CCHP system and separated production (SP) system. The fuel energy consumptions of CCHP system following electrical demand management (EDM) and thermal demand management (TDM) are deduced respectively. Three indicators: primary energy saving, exergy efficiency and CO2 emission reduction, are employed to evaluate the performances of CCHP system for a commercial building in Beijing, China. The feasibility analysis shows that the performance of CCHP system is strictly dependent upon building energy demands. The selection of CCHP operation modes is systemically based on building loads, CCHP system and local SP system. The calculation results conclude that CCHP system in winter under EDM achieves more benefits than in summer. The sensitivity discussion indicates that the coefficient of performance for cooling and the efficiency of electricity generation are the most sensitive variables to the energetic and environmental performances of CCHP system.  相似文献   

18.
This paper briefly analyzed some problems and limitations of existing evaluation indicators for distributed energy system performance. Based on the diversity and difference of the energy form and grade of cooling, heating and power in the distributed combined cooling, heating, and power(CCHP) system, this paper proposed three-index evaluation system composed of key indicators including relative energy saving rate, exergy efficiency and thermoelectric ratio. In order to further prove the reasonableness and scientificity of the evaluation index system applied in performance evaluation of distributed CCHP system, it enumerated, calculated, and evaluated the energy conservation of three engineering cases. The evaluation results showed that the high energy-saving rate of the system did not mean good energy-saving, but also the efficiency of the system should be examined. Only when the energy saving rate and exergy efficiency were both high, can the energy saving performance of the system be demonstrated. When the energy-saving rate was high and the efficiency was not high, it is shown that the energy-saving of the system had great room for improvement.  相似文献   

19.
A new combined cooling, heating and power (CCHP) system is proposed. This system is driven by solar energy, which is different from the current CCHP systems with gas turbine or engine as prime movers. This system combines a Rankine cycle and an ejector refrigeration cycle, which could produce cooling output, heating output and power output simultaneously. The effects of hour angle and the slope angle of the aperture plane for the solar collectors on the system performance are examined. Parametric optimization is conducted by means of genetic algorithm (GA) to find the maximum exergy efficiency. It is shown that the optimal slope angle of the aperture plane for the solar collectors is 60° at 10 a.m. on June 12, and the CCHP system can reach its optimal performance with the slope angle of 45° for the aperture plane at midday. It is also shown that the system can reach the maximum exergy efficiency of 60.33% under the conditions of the optimal slope angle and hour angle.  相似文献   

20.
This paper proposes a novel combined cooling, heating, and power (CCHP) system integrated with molten carbonate fuel cell (MCFC), integrated solar gas-steam combined cycle (ISCC), and double-effect absorption lithium bromide refrigeration (DEALBR) system. According to the principle of energy cascade utilization, part of the high-temperature waste gas discharged by MCFC is led to the heat recovery steam generator (HRSG) for further waste heat utilization, and the other part of the high-temperature waste gas is led to the MCFC cathode to produce CO32?, and solar energy is used to replace part of the heating load of a high-pressure economizer in HRSG. Aspen Plus software is used for modeling, and the effects of key factors on the system performances are analyzed and evaluated by using the exergy analysis method. The results show that the new CCHP system can produce 494.1 MW of electric power, 7557.09 kW of cooling load and 57,956.25 kW of heating load. Both the exergy efficiency and the energy efficiency of the new system are 61.69% and 61.64%, respectively. Comparing the research results of new system with similar systems, it is found that the new CCHP system has better ability to do work, lower CO2 emission, and can meet the cooling load, heating load and electric power requirements of the user side at the same time.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号