首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 234 毫秒
1.
采用气相色谱-电子捕获检测器(GC-ECD)测定了稻瘟酰胺在土壤、田水、谷壳、糙米和水稻植株样品中的残留及消解动态。田水样品用二氯甲烷萃取,土壤、水稻植株、谷壳和糙米样品用乙腈提取,GC-ECD检测。当稻瘟酰胺在土壤、谷壳、糙米和水稻植株中的添加浓度为0.02~2.0 mg/kg时,其回收率为88.78%~96.82%之间,相对标准偏差(RSD)为5.02%~9.35%,在田水中的添加浓度为0.005~2.0 mg/L时,其平均回收率在95.52%~96.50%之间,RSD为1.93%~5.05%;稻瘟酰胺在田水中的最低检测浓度为0.005 mg/kg,在水稻植株、土壤、谷壳和糙米中的最低检测浓度为0.02 mg/kg。消解动态试验结果显示,稻瘟酰胺在水稻植株、土壤以及田水中的消解动态规律均符合一级动力学方程,其半衰期为6.10~16.93 d;糙米中的最大残留值为0.493 mg/kg,推荐糙米中的MRL值为1 mg/kg。  相似文献   

2.
王点点  宋宁慧  吴文铸  石利利 《农药》2013,(9):674-676,693
[方法]采用高效液相色谱法测定了40%灭草松水分散粒剂在水稻及稻田环境中的残留动态。[结果]当灭草松的添加量为0.05~1.0 mg/kg时,其在水稻田水、土壤、稻秆、稻米和稻壳中的平均回收率为81.3%~107.8%,变异系数在3.3%~5.8%之间,方法的最低检出限依次为田水0.012 mg/L、土壤0.017 mg/kg、稻秆0.035 mg/kg、稻米0.026 mg/kg、稻壳0.029 mg/kg。[结论]灭草松在福州、天津、南京的稻田水中的消解半衰期为2.0~6.9 d,土壤中8.7~13.9 d,植株中5.3~6.9 d。按照推荐剂量720 g a.i./hm2和1.5倍推荐剂量1080 g a.i./hm2施用灭草松水分散粒剂,施药1次,在收获的稻壳和稻米中均未检出灭草松。  相似文献   

3.
采用气相色谱-电子捕获检测器(GC-ECD)测定了噻嗪酮在田水、土壤和水稻植株样品中的消解动态。田水样品用二氯甲烷萃取,土壤、水稻植株样品用甲醇提取,提取液经柱层析净化、GC-ECD检测。当噻嗪酮在土壤、植株中的添加浓度为0.05~5.0mg/kg时,其回收率为72.9%~106.6%之间,相对标准偏差(RSD)为2.3%~9.8%,在田水中的添加浓度为0.025~2.0 mg/L时,其平均回收率在76.8%~87.0%之间,RSD为2.5%~4.9%;噻嗪酮的最小检出量为2.0×10~(-11) g,在田水中的最低检测浓度为0.025 mg/kg,土壤、水稻植株中的最低检测浓度为0.05 mg/kg。消解动态试验结果显示,噻嗪酮在水稻植株、土壤以及田水中的消解动态规律均符合一级动力学方程,其半衰期为5.9~13.1 d。  相似文献   

4.
40%稻丰散水乳剂在水稻及稻田环境中的残留动态研究   总被引:1,自引:0,他引:1  
测定了稻丰散在水稻及稻田环境的残留动态情况。以丙酮、乙腈或二氯甲烷提取水稻、土壤及水样中的稻丰散残留,稻苗样品过SPE小柱净化,稻壳和糙米直接浓缩、定容,最后用GC-ECD(气相色谱仪带电子捕获检测器)测定。稻丰散在土壤、田水、稻杆(苗)、糙米和稻壳中的添加回收率为83.8%~117.2%。稻丰散在三地田水、土壤和稻苗中的消解半衰期分别为0.92~1.71 d、8.2~16.1 d和2.59~4.30 d。按推荐剂量的1.5倍施药3~4次,距最后一次施药间隔21 d后,稻杆中最终残留量≤0.019~2.05 mg/kg,稻壳中最终残留量≤0.234~4.19 mg/kg,糙米中最终残留量≤0.001~0.040 mg/kg。暂以稻丰散在糙米中的最高残留限量为0.05 mg/kg,糙米距采收期最后一次施药21 d是安全的,但稻壳慎用。  相似文献   

5.
采用(GC-ECD测定了咪鲜胺在田水、土壤和水稻植株样品中的消解动态。土壤、水稻植株样品用丙酮提取,提取液经衍生净化、GC-ECD检测。当咪鲜胺在土壤、田水和植株中的添加浓度为0.05~5.0 mg/kg时,其回收率为83.1%~98.7%之间,RSD为2.6%~6.1%;咪鲜胺的LOD为2.0×10~(-11) g,在田水、土壤、水稻植株中的LOQ为0.05 mg/kg。消解动态试验结果显示,咪鲜胺在植株、土壤以及田水中的消解动态规律符合一级动力学方程,半衰期为3.5~9.5 d。  相似文献   

6.
采用气相色谱-电子捕获检测器(GC-ECD)测定了苯醚甲环唑在水稻植株、土壤、田水样品中的消解动态。田水样品用二氯甲烷萃取,植株、土壤样品用乙腈提取,净化后用GC-ECD进行检测。当苯醚甲环唑在水稻植株和土壤中的添加浓度为0.02~2.0 mg/kg时,其回收率为85.89%~105.33%,相对标准偏差(RSD)为1.49%~5.26%,在田水中的添加浓度为0.005~1.0 mg/kg时,其平均回收率为95.68%~102.13%,RSD为2.65%~6.82%;苯醚甲环唑的最小检出量为2.0×10-11 g,在水稻植株和土壤中的最低检测浓度为0.02 mg/kg,田水中的最低检测浓度为0.005mg/kg。消解动态试验结果显示,苯醚甲环唑在水稻植株、土壤和田水中的半衰期分别为2.75~5.68 d、4.68~18.93 d、0.81~6.31 d。  相似文献   

7.
韩丙军  谢德芳  彭黎旭  汤建彪  刘洪升 《农药》2007,46(10):688-689,698
研究腈菌唑在土壤中的残留分析方法及其在土壤中热带气候下的消解动态和最终残留。土壤样品经乙腈萃取,净化后采用毛细管气相色谱法-氮磷检测器(GC-NPD)进行测定。方法检出限为0.008mg/kg,在0.20、1.00、2.00mg/kg三个添加水平,回收率为75.6%~94.6%,变异系数为2.7%~6.8%,符合农药残留分析的要求。运用上述方法,测定腈菌唑在热带气候下土壤中的消解动态和最终残留。结果表明,腈菌唑在土壤中小结速度较快,测得在土壤中半衰期2004年为17.0d,2005年为14.9d;以最大推荐施用剂量和2倍最大推荐施用剂量施用,不同处理测得在最后一次施药后20d残留量均小于1mg/kg。分析结果表明腈菌唑是一种使用安全的杀菌剂。  相似文献   

8.
采用气相色谱-电子捕获检测器(GC-ECD)测定了氟环唑在水稻植株、土壤和田水样品中的消解动态。样品前处理均采用乙腈作提取剂,C18和Carb为分散剂进行净化,并用GC-ECD进行检测。当氟环唑在水稻植株、土壤、田水中的添加浓度为0.05~1.0 mg/kg时,其回收率为73.8%~103.2%,相对标准偏差(RSD)为2.7%~8.5%;氟环唑的最小检出量为1.0×10-11 g,在水稻植株、土壤和田水中的最低检测浓度为0.05mg/kg。消解动态试验结果显示,氟环唑在水稻植株和田水中的半衰期分别为2.6~12.6 d,2.0~2.2 d。  相似文献   

9.
精-异丙甲草胺在大豆及土壤中的残留动态   总被引:1,自引:0,他引:1  
张玉婷  郭永泽  刘磊  邵辉  宋淑荣  李辉 《农药》2008,47(2):130-131,139
为了评价精-异丙甲草胺在大豆上的残留动态及环境安全性,在天津、吉林两地同时进行了精-异丙甲草胺在大豆上的残留动态试验.结果表明,天津地区精-异丙甲草胺在大豆植株中的半衰期为19.1 d,在土壤中的半衰期为27.9 d;吉林地区精-异丙甲草胺在大豆植株中的半衰期为21.4 d,在土壤中的半衰期为34.1 d.收获的大豆籽粒中精-异丙甲草胺最终残留量均为未检出.  相似文献   

10.
[目的]为检测水稻中戊唑醇残留及评价其在水稻上使用的安全性,建立了戊唑醇在水稻植株、稻壳、糙米和土壤中的残留分析方法。[方法]水稻样品采用乙腈提取,Florisil小柱净化,GC-NPD测定。同时,于浙江、山东和湖南3地进行了田间试验。[结果]戊唑醇在水稻植株和稻壳中的添加质量分数为0.05~5.0 mg/kg时,平均回收率为88.80%~103.86%,相对标准偏差(RSD)为4.25%~14.36%。戊唑醇在糙米和土壤中的添加质量分数为0.02~2.0 mg/kg时,平均回收率为89.19%~102.27%,相对标准偏差(RSD)为2.26%~8.58%。戊唑醇在水稻植株和稻壳的最低检测质量分数(LOQ)为0.05 mg/kg,在糙米和土壤中最低检测质量分数(LOQ)为0.02 mg/kg。田间试验表明:戊唑醇在水稻植株中的消解动态符合一级动力学方程,在浙江、山东和湖南3地水稻植株中的半衰期分别为0.60、11.48、3.14 d;最后用药距收期21 d时,戊唑醇在植株中的残留量为0.30 mg/kg、稻壳中的残留量为0.22 mg/kg、糙米中的残留量为<0.02 mg/kg、土壤中的残留量为<0.02 mg/kg。[结论]该方法的灵敏度、精密度和回收率等均符合农药残留分析的要求。戊唑醇在水稻植株中属于易降解农药,降解半衰期为0.60~11.48 d。  相似文献   

11.
何宝  齐涓菲  刘惠敏 《现代农药》2014,(1):44-45,49
建立了氯啶菌酯在水稻植株、大米和土壤中残留量的液相色谱定量检测方法。样品经乙腈提取,高效液相色谱(DAD)测定。结果表明:氯啶菌酯的最小检出量(LOD)为0.5 ng,在植株、大米和土壤中最低检测浓度(LOQ)为0.05 mg/kg。氯啶菌酯的添加回收率为93.00%~101.29%,变异系数为0.63%~9.32%;在1.0~100.0 mg/L的质量浓度范围内,相关系数为1.00。该方法的准确度和灵敏度均符合农药残留分析要求。  相似文献   

12.
10%吡虫啉在水稻中的残留动态研究   总被引:13,自引:5,他引:8  
采用高效液相色谱法测定了吡虫啉在水稻中的残留量。试验结果表明:吡虫啉在土壤、稻杆、糙米、米糠和田水中的添加回收率为71.66% ̄96.34%,变异系数为0.31% ̄11.44%。吡虫啉在稻杆、田水和土壤中的半衰期分别为1.2 ̄2.0d、1.1 ̄3.1d和5.6 ̄15.3d。糙米中吡虫啉的最终残留量均低于0.025mg/kg。  相似文献   

13.
杨晓云  李振  刘新清  徐浩  徐汉虹  黄炳球 《农药》2006,45(10):689-691,717
为了评价咪鲜胺在水稻上使用后的残留动态及环境安全性,在广东、浙江两地同时进行了咪鲜胺在水稻上的残留动态试验。结果表明:在广东地区,咪鲜胺在植株中的半衰期为2.59d,在土壤中的半衰期为2.46d,在稻田水的半衰期为0.46d;在浙江地区,咪鲜胺在植株中的半衰期为3.08d,在土壤中的半衰期为1.89d,在稻田水的半衰期为1.52d。收获的水稻糙米中咪鲜胺最终残留量均低于0.5mg/kg。  相似文献   

14.
陈莉  戴荣彩  陈家梅  夏福利 《农药》2006,45(3):186-188
为评价除草剂四唑嘧磺隆在水稻上使用后的残留动态及环境安全性,在北京海淀区进行了50%四唑嘧磺隆水分散粒剂在水稻上的残留动态和最终残留试验研究。样品经丙酮提取抽滤后,再经液液分配及氧化铝柱净化、浓缩、定容后,用紫外检测器的液相色谱进行测定。其有效成分四唑嘧磺隆的最低检出量为0.02ng,在稻田水、土壤、鲜植株、稻壳、糙米样品中的平均回收率为82.4%-105.0%,变异系数为1.1%~14.1%,符合农药残留分析的要求。结果表明:四唑嘧磺隆在水稻植株上的半衰期为2.4d,在土壤巾的半衰期为5.5d,在稻田水中的半衰期为1.9d,施药后7d四唑嘧磺隆在水稻植株上的消解达到80%以上。50%四唑嘧磺隆水分散粒剂按80、120g/hm。使用,施药1次,收获时,四唑嘧磺降在糙米、稻壳、稻草、土壤中的残留量均未检出。  相似文献   

15.
丙环唑在香蕉及土壤中的残留量测定   总被引:2,自引:0,他引:2  
研究了丙环唑在香蕉及土壤中的残留降解情况,评价其施用于香蕉后的安全性。采用GC–NPD进行定量检测,丙环唑在香蕉全蕉中的平均回收率为100.6%~108.0%;在香蕉蕉肉中的平均回收率为71.0%~96.2%;在土壤中的平均回收率为97.3%~110.4%。研究结果表明,丙环唑在香蕉全蕉中比在土壤中消解快,2010年其在香蕉全蕉和土壤中消解半衰期分别为11.4 d和17.5 d,2011年分别为15.3 d和24.3 d。在香蕉上按照推荐剂量施药3次,采收期距最后一次施药42 d,香蕉蕉肉中丙环唑残留量小于0.1 mg/kg,低于GB 2763—2005规定的最大残留限量(MRL)0.1 mg/kg。  相似文献   

16.
李湄川  李智宁  张季 《辽宁化工》2014,(4):369-371,375
为探索苄嘧磺隆和苯噻酰草胺在稻田水和土壤中的降解快慢,设计了田间试验方案,施药一次,按不同时间进行样品采集。使用液-液萃取提取在水中的残留,分散固相萃取法提取在稻田土壤中的残留,应用HPLC/DAD检测。苄嘧磺隆在稻田水和土壤中的添加回收率在77.4%~109%,相对标准偏差(RSD)在1.9%~6.1%。苯噻酰草胺在稻田水和土壤中的添加回收率在87.2%~103%,相对标准偏差(RSD)在1.6%~7.9%。经检测发现苄嘧磺隆和苯噻酰草胺在稻田水中的消解速度要大于在稻田土壤中的消解,苯噻酰草胺在稻田水中的降解速率要大于在土壤中。  相似文献   

17.
运用高效液相色谱分析技术测定25%吡蚜酮·噻虫嗪悬浮剂在稻田水、土壤、植株和糙米中的消解动态和最终残留。吡蚜酮在稻田水、土壤和植株中的消解动态方程分别为c=0.134e-0.12t,C=1.377e-0.13t及C=0.741e-0.10t。噻虫嗪在稻田水、土壤和植株中的消解动态方程分别为C=0.114e-0.12t,C=1.118e-0.10t及C=0.626e-0.12t。最终残留结果显示,25%吡蚜酮·噻虫嚷悬浮剂施用剂量为0.0525~0.0788g/m2时,施药距水稻的安全收获间隔期为21d。  相似文献   

18.
建立了吡蚜酮在水稻植株、大米和土壤中残留量的液相色谱定量检测方法。样品经乙腈提取,过SPE C18小柱净化,高效液相色谱(UV)测定,吡蚜酮的最小检测量为5×10-10 g,在植株、大米和土壤中最低检出浓度均为0.05 mg/kg。水稻植株中吡蚜酮的添加回收率为88.76%~103.9%,变异系数为7.63%~9.29%;大米中吡蚜酮的添加回收率为90.49%~91.38%,变异系数为3.43%~4.62%;土壤中吡蚜酮的添加回收率为90.24%~91.40%,变异系数为3.32%~5.15%。方法的线性范围在0.05~10 mg/L,方程y=4533.7 x+15302,相关系数0.9984。该方法的准确度和灵敏度均符合农药残留的分析要求。  相似文献   

19.
Crop residue management to sustain soil fertility and irrigated rice yields   总被引:4,自引:0,他引:4  
Field experiments were conducted on a sandy clay loam soil (deep aquic ustorthent) for five consecutive seasons from wet season (WS) 1998 to WS 2000 with a permanent layout at the Directorate of Rice Research (DRR) farm, ICRISAT campus, India, to study the influence of incorporation of rice straw residues alone or in combination with in situ grown green manure (GM) and straw burning on soil fertility, irrigated rice productivity and pest incidence in comparison with only fertiliser application (control). The residue treatments received uniform doses of N, K, Zn at the same level as that in control plots. The crop residue treatments favourably influenced some of the soil parameters over control. Recycling of crop residues by incorporation or burning increased soil available K and organic carbon significantly over control, while total N content increased by residue incorporation. Bulk density decreased with residue incorporation as compared to control and burning treatments. Yellow stem borer was the only pest observed, with higher white ear damage recorded during wet seasons ranging from 14.2–31.3% in 1999 and 16.8–29.7% in 2000. The damage was higher with straw + green manure, apparently reflecting the quantum of N applied through crop residues and fertilisers. The influence of crop residue treatments on yield parameters like panicle and spikelet number was more apparent after two cycles of residue incorporation, recording significant effects on rice productivity in the dry and wet seasons of 2000. Rice yield increased by 1.0 to 1.2 t/ha in DS and 0.4 to 0.8 t/ha in WS.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号